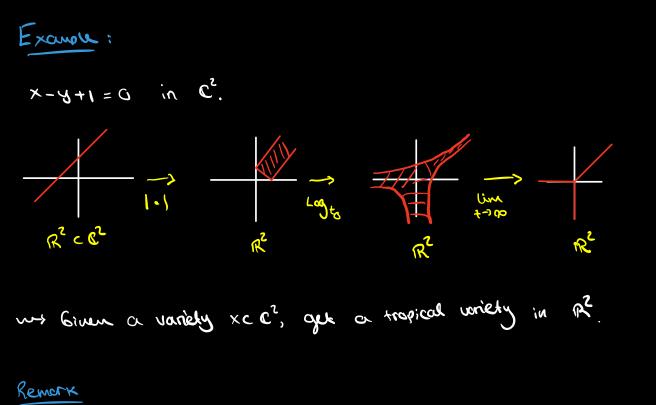
Logarithmic Limit
Recall:
$$\pi = R_0 \{ -\infty \}$$
 $x_{\Theta_{y}} = \max(x, y) \geq x_{\Theta_{y}} = x_{\Theta_{y}}$

. lim X@ty = X@y (tropical Sum)

my Tropical varieties an anise as limits via Log.

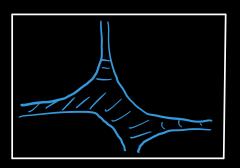


The images above under the map Locy, for different it's one Called <u>Amoebas</u>. One can study the tropical craniety by Studying these.

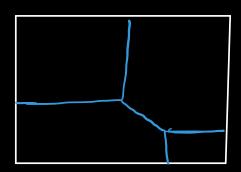
Example
$$f = (1 + x + y) + t x y$$
 family of
quadruics $X_t = \{f_t = 0\} \in \mathbb{C}^2$

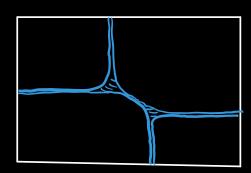
$$A_t = Log_t(X_t) cR^2$$

t Small



 $(-) \infty$





3 roads to a tropical voriety

 $K = \mathbb{C}\left\{\left|t\right| = \bigcup \mathbb{C}\left(\left|t^{n}\right|\right)\right\}$ The field of Puiseux series.

$$E_{-q} : 3t + 4t + t + t + ... -$$

Valuation: vol:
$$K^* \longrightarrow \mathbb{R}$$

$$\sum_{i=K}^{\infty} a_i t^{i/n} \mapsto \kappa/n$$
• $Val(xy) = Val(x) + Val(y)$
• $Val(x+y) \succcurlyeq \min\{Val(x), val(y)\}$
(Equality when $val(x) \neq Val(y)$

Remork: K is algebraically closed. The algebraic closure Of C((t)) is K.

Define the tropicalization of X is the closure in \mathbb{R}^n of the set $\chi^{trop} = \{(Val(u_1), \dots, Val(y_n)) : f(y_1, \dots, y_n) = c\}$

Remark: 1.1:= e^{-Val(.)} defines an absolute value on K. Then

Note: Very different from the usual (archimedean) absolute value.

· From I use can also construct a tropical polynomial:

$$trop(f): \mathbb{R}^{n} \longrightarrow \mathbb{R}$$

$$w \longmapsto \min_{u \in \mathbb{Z}^{n}} (val(c_{u}) + u \cdot w)$$

 $trop(f) = \bigoplus_{u} Val(c_u) \otimes x_1^{u_1} \otimes ... \otimes x_n^{u_n}$ as a tropical poly.

Det 2: The tropicalization of X is the locus

Picks cut the coeff in frant of

$$Picks cut the coeff in frant of
in w(t) = $\sum_{u \in \mathbb{Z}^{n}} \frac{1}{t} \operatorname{Vel}(c_{u}) c_{u} \times u$
 $u \in \mathbb{Z}^{n} s.t$$$

Inw(f) is called an initial torm.

Remark: Inw(1) is the sum of the residue of the terms in t that achives its minimum. Def 3: The propression of X is the set of we \mathbb{R}^n with $(in_w(t)) \neq (1)$ in $K[X_1^{t_1}, \dots, X_n^{t_n}]$.

$$f = x - y + i \in K[x^{\pm i}, y^{\pm i}]$$

• trop(t) = 0 $\otimes x \otimes y$ So $V(trop(t))$ is
= min(0, x, y)

• The zeros of f one (Z, Z+1) with $Z \in K \setminus \{0, 1\}$. Recall Val(Z+1) = min(Val(Z), Val(1)) = min(Val(Z), 0)When $Val(Z) \neq 0$.

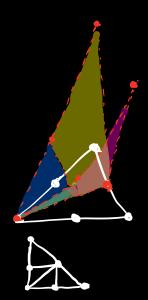
$$Val(\Xi) = 0 = Y Val(\Xi_{+1}) > 0$$

n fotal:

$$\left(V_{0L}(z), V_{0L}(z+1)\right) = \begin{cases} (V_{0L}(z), 0) & V_{0L}(z) \\ (V_{0L}(z), V_{0L}(z+1)) & V_{0L}(z+1) \\ (0, V_{0L}(z+1)) & V_{0L}(z+1) \\ (0, 0) & O/W \end{cases}$$

For W=(a,b) we have trop(t)(w) = min(a, b, 0)
 So inw(t) not monomial (=> a=0, b=0, or a=b <0
 which is the line.

$$\frac{F_{x} comple}{f = (3t^{3} + 5t^{2})xy' + 8t^{2}y' + 4t^{2}} Draw + rop(v(t))$$



$$\frac{E \times comple}{f = 1 + x + y + t \times y},$$

Theorem (Kapranov)

For a Lowrent Polynemial $f \in K[x_1^{\pm 1}, ..., x_n^{\pm 1}]$ the toruning sets one equal:

1)
$$V(trop(4))$$

2) $\{w \in \mathbb{R}^{n} \mid in_{w}(4) \text{ not monentical } y$
3) $\{(val(4, 7), ..., val(4, 7)) \mid f(4, ..., 4_{n}) = 0\}$

Remarks

- Can replace K with any (non-trivial) valued field.

$$\tilde{t}^{m}f(t^{w'}x_{1,\dots},t^{w_{n}}x_{n}) \in K[t][x_{1,\dots}^{t'},x_{n}] defines a variety $\mathcal{T} \xrightarrow{3} A'$ where $\tilde{g}^{t}(c) = V(1n_{w}(t))$
and general fiber isomorphic to $f(x_{1\dots},x_{n}) = 0$.$$

The general case,
Let
$$I \in K[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$$
 be on ideal 8 $X=V(I)$
• $trop(X) := (\int_{t \in I} trop(V(t)))$
• $lnw(I) := (lnw(t) | t \in I)$

Manning:
$$I = (t_{1}..., t_{n}) \Rightarrow t_{rop}(I) = (t_{rop}(t_{1})..., t_{rop}(t_{n}))$$

Theorem (Fundamental this of tropical geometry)
Notation as above: The following sets coincide.
T) trop(X)
2) twer? (Inw(I) = (1) f
3) t(val(y_1),..., val(y_n) (y_{1}..., y_n) \in X);

Weights?
Consider a curve
$$X = V(f)$$
 $f = \Sigma CuX^{u}$.
In our three cases we obtain weights:
1) As we did last time (lattice points in dual polygan)
2) #Components (w/ multiplicity) in $V(\ln w(f))$
3) For dim(X) = 0, local at site of Sibers $X \xrightarrow{Val}$ trop(X)

Generalize.

Exercises
T) Draw trop(v(f)) for

$$f = t^{3}x + (t + 3t^{2} + 5t^{4})y + t^{2}$$

 $f = t^{3}x^{2} + xy + ty^{2} + tx + y + t$

3) Define Val:
$$K \rightarrow Q \cup (\infty)$$
 by $Val(0) := \infty$.
Set $|\cdot| = e^{-Val(0)}$
This satisfies
() $|x| = 0 \iff x = 0$
2) $|xy| = |x||y|$
3) $|x+y| \le \max(|x|, |y|)$
Let $B(r, x) = dy \in K ||x-y| \le r \frac{1}{2}$ be the
ball of radius r centered around x.

- Show: Any point $y \in B(\Gamma, X)$ is the center of the ball. I.e. $B(\Gamma, X) = B(\Gamma, Y)$ whenever $|X-Y| \leq \Gamma$.
- 4) Prove that a tropical hypersurface $V c R^n$ with newton polytone the stondard n-simplex of size d has at most dⁿ vertices, end that V is non-singular its equality holds.
- 5) Let SCR³ be a non-Singular tropical surbace with Newton Polytope 203. Show that S has a unique compact facet.
 - (Hint: One must prove that the dual subdivision has a unique edge not contained in the boundary; use that the tetrahedron has ever characteristic 1)
- 6) Construct a polynomial f such that trop(V(t)) is a fan, and f has a coefficient with non-zero Valuation
- 7) What is the largest multiplicity of any edge in the tropicalization of a plane curve of degree d. How about surdences in 3-space?