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Background and prerequisites



Abelian integrals

/ Va2 cos(0)2 + b2 sin(6)2d0
1 _ k2 2)
x
V( 1*1‘2 (1 — k222)

Fay) = 22/a® + /B —1=0

From a rational function R(x,y) and polynomial identity f(x,y) = 0 for f
of degree d > 2, we have an abelian integral:

/ R(x, y)dz.

More generally, what about when the variables are complex?
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Example: Letting f(z,y) = 23 + az® + bz +c —y?> = 0, R(z,y) = 1/y:

/PQ dx P2 dx
o Uy Vi +ar®+brtc

Must choose branches +,/ and glue along branch cuts between the
roots of 23 — az? + bx + ¢ and cc.
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On the Riemann Surface S of
f(z,y), the integral

/p2 dx
n Y
is well defined up to periods

[ g [

Theorem (Abel’s theorem)

P2
3. rpi
\/ > / 9 _ g mod periods
flzy) e 0 iz 7m0 Y

yal
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Distinguishing between varieties

How can we tell the difference between two Riemann surfaces?

(=) @&

deg f <2 deg f =3 deg f >3
More generally, an algebraic variety X is a set
X ={(z1,..,zn) | filz1,...,;20) =0, ..., fr(x1,...,2,) = 0}.

Torelli-type theorems

A Torelli-type theorem transforms the problem distinguishing varieties
into a linear algebra problem.
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Singular homology

The homology groups H,(X;Z) are topological invariants of spaces,

Example (Homology of a two-holed torus)

Hi(S;Z) = {au, B, az, B2)z 2 Z*

“detecting the holes” in our space.

Q:H®H —7Z

ar az P11 Bo
oq 0 0 1 0

o2 0 0 0 1
61| —1 0 0 O
B2 0 -1 0 O

The cohomology H"(X;Z) is defined dually to homology, and (in our
cases) the bilinear pairing @ induces H"(X;Z) = Hom(H,(X;Z),Z).

Edvard Aksnes

Torelli theorems

7th March 2024 6/27



But homology is not sufficient

v =z(z—1)(z —2) vV =z(z—1)(z—1—1)

H,(S;7Z) = 7* H,(S",2) = 7*
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Complex analysis

A Riemann surface S is also a complex manifold.

All the machinery of complex
analysis transfers to S:

m Complex coordinates

T +iy = 2.
m f: S — C can be holomorphic
of/0z = 0.

Holomorphic 1-forms HY(S; Q") ~ {a(2)dz | da = 0}
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Periods determine elliptic curves
Pick bases («, 8) = H'(F;Z) and (w) = H°(E;Q'), and compute the

periods
w1 :/w, (ovp) :/w
a B

are generators of a lattice A c C.

E = Jac(C)
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Curves



Torelli theorem for curves

Pick compatible bases:

H{(C;Z) = (7,..., = A, ) o
01( 1) (m ’729)2 with / wj = 5ij7 0<i4,5<g.
H(C; Q) = (wi,...,wg)c =CY Vi

One can construct the Jacobian of the curve

Jac(C) == HY(C; QY /H,(C;Z) = CI/A.

Theorem (Torelli (1913), Andreotti (1958))

Two complex projective curves C and C’ are isomorphic if and only
if their polarized Jacobians (Jac(C),O¢) and (Jac(C'),O¢) are iso-
morphic.
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Theta divisor

Since Jac(C) is a torus:

H?(Jac(C); Z) = A’H' (Jac(C); Z) = N*H (C; Z)
Q: Hi(C;Z) ® H1(C;Z) — Z induces a class w € H?(Jac(C);Z).
This gives a principal polarization, making Jac(C') an abelian variety.

Abelian variety theory:

Line bundle L on Jac(C)

. ,
with prescribed ¢1 (L) multipliers on C

Sections of L <« theta functions on C9

In particular, w gives us a unique divisor ©, the Theta divisor of C'.
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Embedding the curve

Picking a base point py € C, we can define the Abel-Jacobi map:

w: C — Jac(C)

p p
p+—>(/ wl,...,/ wg>
Po Po

Which can be generalized to p(,—1): C9™1 — Jac(C)

g—1

(P1-- - Pg-1) = Y p(pi)-

=1

Let W(,—1) = p(g—1)(C¥~V) be the image.

Theorem (Riemann’s theorem)
© = W1y + ... asdivisors on Jac(C).

pointsof © <« lists of points p1,...,p,—1 € C
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Gauss Map

Jac(C) = HY(C,QYY*/H1(C;Z) ~ Tp(Jac(C)) = HO(C,Qh)*
For any subvariety X C Jac(C) of dimension d, let X*™ define:

Gx: X*™ — Grass(d,g — 1)
2 T, X C T, Jac(C) = C9

By p: C — Jac(C), view P91
C C Jac(C) as a subvariety.

Go: C — Grass(1,g — 1) = PI9~!
p = (wi(p),...,wg(p))

is the canonical embedding. C
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Branching locus of the Gauss map

Go: O™ — Grass(g — 2,9 — 1) = (P9 1)*

Riemann singularity theorem:
x € © smooth
&
pi,---py—q formunique hyperplane.

B C (P9~1)* the branching locus Ge.

Lemma

Let C* c (P9~1)* the dual of the curve, then B = C*
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K3 surfaces and other
generalizations



Hodge theory for complex varieties

H' (X;C)2H"(X;Z)®C

Theorem (The Hodge decomposition)

Let X be a smooth complex projective variety of dimension d. Then
the complex cohomology decomposes as

H'(X;C)= @ HM(X),

ptg=r

foreach 0 < r < 2d, where HP9(X) = HI(X,QP).

H2’2
Hl,l

HI,O HO,l

H2’0 Hl,l
H0,0

HO’O
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Hodge-Riemann bilinear relations

Q: Hy(X;Z)® H (X, Z) = Z
Q: H,(X;C)® Hi(X;C) —» C

The Hodge decomposition can be used to show that these must satisfy
the Hodge-Riemann bilinear relations:

(—1)*Q(¢, ) = Q¥ ¢)
QUHP, H'™) =
ip_QQ(w’ a)

ifp#rorq#s
e HP

Vv
o o
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What is a Torelli-type theorem?

Given a smooth complex projective variety X of dimension d
m a lattice H*(X;7Z),
m a decomposition H*(X;C) & &, ,—H"(X), and
m a non-degenerate bilinear form Q: Hy(X;Z) ® Hp(X;Z) — Z,
extending to H*(X; C), satisfying the Hodge-Riemann bilinear
relations.
Together, this data is called a polarized Hodge structure.

Torelli-type theorem

A Torelli-type theorem is a theorem characterizing a variety in terms of
its polarized Hodge structures.
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What is a K3 surface?

A smooth complex algebraic
surface X with h°(X, Q%) =1 and
h'(X,0) = 0is a K3 surface.

SHBO

1
0 0
1 20 1
0 0
1

Figure: Kummer surface, (c. Rocchini CC BY-SA
3.0)

A polarization is a choice of an ample line bundle class ¢ € H! N HZ.
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Global Torelli for marked polarized K3’s
The K3 lattice is Axz = Eg? @ H®3, to which all Hy(X;Z) are isometric.

A marking of a polarized K3 surface (X, c) is:

m isometry ¢: Ho(X;Z) — Aks, and T

m class ¢ = ¢(c) € Ags. - \Pra(D)
Hodge decomposition < (w) = H?%(X)
~> period point ®(X), i.e. value of ¢(w) in Aa®C - Axs

DKS(K) = {[U] € IP>(AK3 ® C) | <U7U> =0, <U7§> >0, <U7£> = O}:

Theorem (Pjateckii-Sapiro Safarevi¢ (1972))

A marked polarized K3 surface X is uniquely determined by its period
point &(X).
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Moduli space of marked K3’s
For each n > 3, there is a moduli space 9,, of marked polarized K3
surfaces.

Proposition
The period map ®: 9,, — D(l) sending a marked K3 surface to its
polarized Hodge structure is a local isomorphism.

Edvard Aksnes Torelli theorems 7th March 2024 20/27



Kummer surfaces

For A an abelian surface, take quotient by action o: z — —=.

Definition (Kummer surface)

The resolution X of A/c is a K3 surface, called a Kummer surface. It
is special if A contains an elliptic curve.

Step 1: A K3 surface X is a special | Step 2: Special Kummer surfaces
Kummer surface iff 3a € Pic(X) are dense
with a? = 0 and « induces a
particular lattice.

N

For special Kummer surfaces,
P(X)=d(X') = X=X
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Finishing the proof
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Global Torelli for threefolds and fourfolds

The third row of the Hodge diamond of a cubic threefold X has the form:
0o H*' HY“ 0.

Then J(X) = H*'(X)/H3(X;Z) is a principally polarized abelian
variety, the 2nd intermediate Jacobian.

Theorem (Tyurin (1971), Clemens-Griffiths (1972))

A non-singular cubic threefold is uniquely determined by its polarized
intermediate Jacobian.

Theorem (Voisin (1986))

Two smooth cubic fourfolds X and X' are isomorphic if and only if there
exists an isometry H*(X;7) — H*(X';Z) preserving the primitive
classes and Hodge structure.
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Global, Local, & Weak Torelli

For 9t the moduli space of polarized algebraic varieties (X,w), P the
classifying space of polarized Hodge structures associated to (X, w).

Global Torelli: ¢: 9t — P is an embedding.
Local Torelli at (X, w): differential dy: Tix) — Ty (x) is injective.
Weak Torelli 3 0t C 91 so that ¢ |y is an embedding.
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