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Birational Geometry
Definition

Let X ,Y be varieties. We say X ,Y are birational if there exists opens
U ,V such that

X ⊇ U ' V ⊆ Y

Goal of birational geometry:
Classify varieties up to birational equivalence
Classify function fields of varieties
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Lüroth’s theorem
Theorem

Let K be a field and M an intermediate field between K and K (X ),

K ⊆ M ⊆ K (X )

Then there exists a rational function f (X ) ∈ K (X ) such that

M = K (f (X )).

Remark

Geometrically, if C is a curve with a dominant rational map P1 99K C,
then C is rational.
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Proof of Lüroth’s theorem (over C)

C ⊂ P1: = C ∪∞

C \ Sing(C) ⊂ C

f

The projective line has no holomorphic forms, so f ∗ω = 0
=⇒ ω = 0, so Riemann shows that C ' P1.

Remark

There are entirely algebraic proofs, valid over any field.
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Lüroth’s Theorem in dimension 2
Theorem (Enriques, Castelnuovo)

Let X be a smooth, complex, surface. Assume there is a dominant
rational map P2 99K X, then X is rational.

Proof.

Similar to the proof of the Lüroth problem.

P2 99K X dominant =⇒ no 1- or 2-forms ”=⇒” rational

�

Remark

The Enriques surface has no holomorphic forms, but is non-rational.
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Higher dimensions
It was suspected Lüroth’s theorem did not extend to higher
dimensions
Focus on cubic- and (2,3)-complete intersection threefolds by
Fano, Enriques and others
Several erroneous results published
First counterexamples to a Lüroth type result came in 1971
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Increasingly Irrational
Let X be a projective variety of defined over an algebraically closed
field k . We say X is:

1 rational if X is birational to Pn

2 stably rational if X × Pk is birational to Pn+k

3 unirational if there is a dominant map Pn 99K X
4 rationally connected if any two general points can be

connected by a rational curve
5 uniruled if there is a dominant map P1 × Y → X , with

dim Y = dim X − 1
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Invariants
Holomorphic forms
The birational automorphism group Bir(X )

Topological invariants
Algebraic cycles and Hodge Theory
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Holomorphic forms
When X is smooth we can consider the holomorphic forms on X .

Theorem

For any k ≥ 0 the space H0(X ,Ω⊗k
X /k ) is a stable birational invariant.

Proof.

Check that it is invariant when replacing X with X×Pn. By smoothness
any birational map is defined outside a codimension 2 subset Z . If
U = X \ Z , we have an injective map

φ∗ : H0(Y ,Ω⊗k
Y /K )→ H0(U ,Ωk

U/K ).
By normality, H0(U ,Ωk

U/K ) ' H0(X ,Ωk
X /K ) �

However, rationally connected =⇒ no forms
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Increasingly Irrational
Let X be a projective variety of defined over an algebraically closed
field k . We say X is:

1 rational if X is birational to Pn

2 stably rational if X × Pk is birational to Pn+k

3 unirational if there is a dominant map Pn 99K X
4 rationally connected if any two general points can be

connected by a rational curve
5 uniruled if there is a dominant map P1 × Y → X , with

dim Y = dim X − 1

Remark

The implications upwards do not hold.
(Unknown if rationally connected =⇒ unirational)
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Unirational non-stably-rational varieties

Let X → P3 be a quartic double solid
ramified along S
Let p be an ordinary double point of S
Let the projection of S from p be ramified
along two transversal cubics

Proposition

If X̃ is the blowup of X at its singular points, then
X̃ is unirational.
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Artin and Mumfords Example is
unirational

Pick a node p on S (and X )
A line L meets S at (p, x , y)

The inverse image of L in X is a conic
The inverse image of the plane P is a Del
Pezzo surface Σ ⊂ X
So X is a conic bundle with a rational
multisection
Σ×P2 X → X shows unirationality

p X

p S P3

L

P

Bjørn Skauli Birational Invariants and the Lüroth problem February 25, 2021 12 / 30



Artin-Mumford invariant
Lemma

Let X be a complex variety. The group H3
B(X ,Z)tors, the torsion sub-

group of the i-th Betti cohomology of X an, is a stable birational invari-
ant.

Proof.

H3
B(X × P1,Z) = H3

B(X ,Z)⊕ H1(X ,Z)

and if τ : X̃ → X is a blow-up in a smooth center Z ⊂ X :

H3
B(X̃ ,Z) = H3

B(X ,Z)⊕ H1
B(Z ,Z)

There is never torsion in H1
B(Y ,Z) �
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Unirational non-stably-rational varieties
Theorem (Artin-Mumford)

If X̃ is the blowup of X at its singular points, then X̃ has non-trivial
torsion in H3

B(X̃ ,Z). In particular, it is not stably rational.

Proof.

Artin and Mumford prove this by explicitly computing the cohomology
and constructing a non-zero 2-torsion class. �
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Intermediate Jacobian
Definition

Let X be a smooth complex threefold. The intermediate Jacobian
J3(X ) is defined as:

J3(X ) := H3
B(X ,C)/(H3,0(X ,C)⊕ H3(X ,Z)/Torsion)

This is a complex torus, and if (H3,0(X ,C) = 0, J3(X ) is a principally
polarized abelian variety.)
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Clemens-Griffiths Criterion
Theorem

Let X be a smooth complex projective threefold with

H3,0(X ) = H1,0(X ) = 0.

If X is rational, then (J3, θX ) is a direct product of Jacobians of smooth
curves.
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Proof.

A birational map P3 99K X factors through blow-ups in smooth centers:
Y X

P3

τ

φ

One can compute that J3(Y ) =
∏

(J(Ci), θCi ), where Ci are the cen-
ters of blow-ups. �
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Stably rational, non-rational varieties
Theorem (BCTSSD ’85)

Let P(x , t) = x3 + p(t)x + q(t) be an irreducible polynomial in C[x , t ],
whose discriminant δ(t) := 4p(t)3 + 27q(t)2 has degree ≥ 5. The
affine hypersurface V ⊂ C4 definied by y2 − δ(t)z2 = P(x , t) is stably
rational but not rational.

Specifically V × P3 is rational (later improved to V × P2 is rational by
Shepherd-Barron)
Irrationality is proven by using the intermediate Jacobian
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Birational rigidity
Theorem (Iskovskikh-Manin ’71)

Let X be a smooth quartic threefold over a field of characteristic 0.
Then the birational automorphism group Bir(X ) is finite

Corollary

A smooth quartic threefold is not rational.
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Hypersurfaces
Let X ⊂ Pn+1 be a smooth hypersurface of degree d .

d = 1 then X ' Pn

d = 2 then projection from a point shows X is rational
d ≥ n + 1, then hn(ΩX /k ) ≥ 1 so X is not (stably) rational
3 ≤ d ≤ n are very difficult cases
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Cubic Surfaces
Rational if it contains two (Galois invariant) disjoint lines (in
particular over C)
Unirational if it contains a point [Segre,Kollár]
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Cubic surfaces
Example

The cubic surface X ⊂ P3
R defined by x2 + y2 = f3(z), when f3 has

three distinct roots, is unirational but not rational.

Proof.

X has two disjoint components. �
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Cubic threefold
Proposition

Let X ⊂ P4 be a smooth complex cubic threefold. Then X is unira-
tional.

Proof.

Blow up a line to get a conic bundle structure X̃ → P2. The exceptional
divisor E is a rational multisection of degree 2. The fiber product

E ×P2 X̃ → X

is rational, and shows that X̃ is unirational. �
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Non-rationality of the cubic threefold
Theorem (Clemens-Griffiths ’72)

Let X ⊂ P4 be a smooth complex cubic threefold. Then X is non-
rational.

Proof.

Use the intermediate Jacobian and the Clemens-Griffiths
criterion.
J3(X ) is an irreducible PPAV of dimension 5
The singular locus of its Theta divisor is a single point
Riemann proves Theta divisors of Jacobians of curves have
singular locus of codimension ≤ 4

�
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Cubic fourfold
The general complex cubic fourfold is conjectured to be
non-rational
Smooth rational complex cubic fourfolds exist in codimension 1

Example

Let X be a smooth cubic fourfold containing two disjoint planes. Then
X is rational
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Higher dimensional cubics
Conjecture

The general complex cubic hypersurface is non-rational except in di-
mension 2

Question

Are there smooth rational cubic hypersurfaces in higher dimensions?
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Recent developments
Lots of recent progress in finding non-stably rational varieties

Theorem (Voisin 2015)

A double cover branched along a very general quartic surface is not
stably rational.

Based on decomposition of the diagonal and the Artin-Mumford
example.
Solved the remaining complete intersection threefolds except the cubic
threefold (for very general).
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