Toxic Geometry

- A special class of varieties constacted fran combiralonics
- A rich class of varieties: car Chardenize may geometric properties purely in terms of cambinaterics.

Goal: Construct an exangle of a Proper variety that is not Projective.

All varieties are ones (1)
(Sep. Schemes of finite tyre over ©)
Definitions integral.

1) A variety x is (complete) Proper it ar any other variety y, the projection $x \times y \rightarrow Y$ is closed.

Exarch: Any Projective (scheme) is unity proper (not easy)
\mathbb{A}^{\prime} is not proper.

$$
\mathbb{A}^{2} \simeq \mathbb{A}^{\prime} \times A^{\prime} \longrightarrow A^{\prime}
$$

$x=\{x y=1\}$ in A^{2} is closed but mans to $\mathbb{A} \cdot\{0\}$ which is gen.
2) A proper variety x is projection it it has an curch line bundle (equiv to embedding $X \hookrightarrow \mathbb{P}^{n}$)

We evil later construct a variety which is proper but admits no couple line bundle.

Teric Gomuty
Det
An n-dimensicnal (algebraic) kows is \square_{m}^{n} whene \mathbb{G}_{m} is the multinliction groug \mathbb{C}^{k} with nornal multiplication. i.e $\mathbb{W}_{m}^{n}=\underbrace{\mathbb{C}^{n} \times \mathbb{C}^{k} \times \ldots \times \mathbb{C}^{2}}_{n \text {-times. }}$
Detinition (1)
A tonic voriety is an irreducible ucrietry X with a zarisni dense torus $\mathbb{G}_{m}^{n} \subset X$

Such that the acticn $\mathbb{G}_{m}^{n} \times \mathbb{G}_{m}^{n} \longrightarrow \mathbb{G}_{m}^{n}$ extends to an action $\mathscr{G}_{m}^{n} \times x \rightarrow x$.

EX: $\mathbb{A}_{\mathbb{C}}^{\prime}=\operatorname{Srec} \mathbb{C}[t]$ is taric. \mathbb{C}^{*} emnedded wia $\mathbb{C}\left[t, t^{-1}\right] \leftarrow \mathbb{C}[t]$. Action $\mathbb{C}_{x}^{*} \mathbb{A}^{\prime} \rightarrow \mathbb{A}^{\prime}$

$$
(t, x) \longmapsto t x .
$$

Defirition (2)
An attine teric variety $X^{c A^{n}}$ is a voriely cut out by a Prime ideal I generated by binemial equations. (Eq's of the tern $x_{i,} \cdots x_{i r}=x_{j}, \cdots x_{j_{r}}$.

Ex $\quad \begin{aligned} & x \\ & 11\end{aligned}$
$\{x y-z w=0\} c A^{4}$ is tonic.
The dense tonus is gin by $\left(x, y, z, \frac{x y}{z}\right)$
fer $x, y, z \neq 0$.

$$
\begin{aligned}
& \left(\mathbb{C}^{\alpha}\right)^{3} \longrightarrow X \\
& (x, y, z) \longmapsto\left(x, y, z, \frac{x y}{z}\right)
\end{aligned}
$$

Detinition/Corstruction (3)
Let $M \simeq \mathbb{Z}^{n}, \quad N=\operatorname{Han} \mathbb{Z}^{2}(M, \mathbb{Z})=M^{V}$

$$
M_{\mathbb{R}}=M_{\otimes} \mathbb{R}, N_{\mathbb{R}}=N \otimes \mathbb{R}
$$

- A strongly convex rational rodyledral cone $\sigma C M_{R}$ is a convecone σ with apex at the origin such that
- (rational) it is generated by finitely many vectors
- (strong) it contains no line through the crigion.

Detine the dual cone $\sigma^{v} C M_{12}^{V}=N_{12}$ by

$$
\sigma^{r}=\{n \in N \mid(n, m)=n(m) \geqslant 0 \text { fer all } m \in \sigma\}
$$

$S_{\sigma}=\sigma^{\vee} \cap N$ is the semigraps of lattice faints (under addition)

Gordans Lemma: S_{σ} is finitely generated.

Consequence: The algebra $\mathbb{C}\left[S_{\sigma}\right]$ is a finitely generated © -algebra.

Notation: we doencte elements of $\mathbb{C}[$ for $]$ by χ^{m} where $m \in S_{0}$. for $m, n \in S_{0}$ we set $x^{m} x^{n}=x^{m+n} \quad x^{0}=1$.
$U_{0}=S_{r e c} \mathbb{C}\left[S_{\sigma}\right]$ is the affine tonic vonisty corresponding to O.

For $J \subset \sigma$ a tace, we get a map $U_{y} \rightarrow U_{\sigma}$ which embeds U_{σ} as a distinguished oren set of Uso.

Dod
A $\tan \Delta \subset M_{R}$ is a collection of cored such that on two cones meets in a common tea which
is in the fen. Each cone σ in Δ gives a terric variety U_{σ}. For two cones $\sigma_{1} \sigma_{2}$ \& $\tau=\sigma_{1} \wedge \sigma_{2}$ we ham

\& we can glue along $U_{\mathcal{H}}$.
The resulting variety X_{Δ} is the taric unistry corresponding to Δ.
E_{x}
4) $\operatorname{li}^{\sigma} S_{\sigma}=\mathbb{Z}_{\geq 0} \subset \mathbb{R}$ gen by y

$$
\operatorname{Srec} \mathbb{C}\left[S_{o r}\right] \simeq \mathbb{A}^{\prime}
$$

2) $\underset{\substack{\uparrow \\ \mathbb{C}[t] \rightarrow \mathbb{C}\left[t_{1} t^{-1}\right]}}{\sigma_{2}<\mathbb{C}[t]} \underset{\sim}{\sigma_{1}}$ glue these $\sim X_{\Delta}=\mathbb{P}^{\prime}$.

Each of these is an $/ A^{2}$.
One cheers that the gluing ogives

$$
X_{B}=\mathbb{P}^{2}
$$

Moral: The geameting of X_{Δ} is dictated by Δ.

Facts
Det A core $\sigma \subset M_{R}$ is Said to be

1) Smacth it its minimal generators can be extended to $a \mathbb{Z}$-basis fer M.
2) Simplicial it its minimal generators are linearly independent in $M_{s \Omega}$.

Net simplieial

Det: A for B is said to be

1) Smocth it all corres ore smacth
2) Simplicial it all cones cre simplicial
3) Complete if $\bigcup_{\sigma \in \Delta} \sigma=N_{\mathbb{R}}$.

Not cargute.

Facts

1) X_{Δ} is smicuth $\leftrightarrow \Delta$ smocth.
2) X_{Δ} has firite quotient sings $\Leftrightarrow \Delta$ simplicial.
3) X_{Δ} Proper $\Leftrightarrow \Delta$ complate.
$(/) \xrightarrow{\sim} R^{2}$ Carneete (Bot aso Pros)

Diwisers

Recall:

- A wail divisar Dis a termal sum

$$
D=\sum_{i \in L} a_{i} D_{i}, \quad|I|<\infty
$$

where $a_{i} \in \mathbb{Z} 叉$ the D_{i} cre closed integral subschemes of Pure cadim 4. (Prime dinisor)

Any ratimal sunction $f \in K(x)$ indioas a "Principal diviscr" $\quad \operatorname{div}(f)=\sum_{D C x} V_{a l_{0}}(f) D$

Som cur all Prime dinisors.
$D_{1} \& D_{2}$ linearly equin it $D_{1}-D_{2}=\operatorname{div}(f)$.
$C l(x)=$ weil diviscrs/lineor eqius.

- A cartier diviscr on X is a closed subscheme buch that fer ay aftine SrecA $c X$
$D \cap \operatorname{Srec} A=\operatorname{Srec} A / f$ for a non-zaro dicuisor $j \in A$.

Fact
:11 $\operatorname{Siec} \mathbb{C}[M]=U_{\sigma}$ then ony T-inroriant Cortier divisor $D=\sum Q_{p} D_{D}$ is of the dum minimal generater
tor ρ.

$$
\begin{aligned}
\operatorname{div}\left(x^{m_{\sigma}}\right) & =\sum\left(m_{\sigma}, u_{\rho}\right) \rho_{\rho} \\
& =D
\end{aligned}
$$

(Note $\left.\left(m_{\sigma}, u_{\rho}\right)=a_{\rho}\right)$

Remark On a tonic variety x, some divisors ore inveriout under the action of the tonus.
$\{T$-invariant devisal $\} \stackrel{1: 1}{\text { veil }}\left\{\begin{array}{l}\text { Orbit acosney } \\ \text { under } T \text {-ahem }\end{array}\right\}$
Ex: $\mathbb{e}^{2}=\pi^{2} \quad$ Action $\left(\mathbb{C}^{*}\right)^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{P}^{2}$

$$
(\lambda, \mu) \times\{x: y: z] \longmapsto[\lambda x: \mu y: z]
$$

$$
\begin{array}{ccc}
\text { Orbits: } & \text { - } x \neq 0, y \neq 0, z \neq 0 & \left(\mathbb{C}^{*}\right)^{2} \\
& -x \neq 0, y \neq 0, z=0 & \{z=0\} \\
& 0 x \neq 0 \quad y=0 \quad z \neq 0 & \{y=0\} \\
& 0 x=0 \quad y \neq 0 \quad z \pm 0 & \{x=0\} \\
& 0 x=y=0 \quad z=0 & \{0: 0: 1] \\
& 0 x=z=0 \quad y \neq 0 & {[0: 1: 0]} \\
& \times x \neq 0 \quad z=y=0 & {[1: 0: 0]}
\end{array}
$$

$\{$ Cadim 4 orbits $\{\stackrel{1: 1}{\longleftrightarrow}$ \{rays of the ten $\}$.
we write ter any creel div an X_{s}
$D=\sum a_{\rho p}$ ter ρ rays of Δ.

Def:
A piecewise linear fuchiar on a fou Δ is
a centimos function $C:|\Delta| \rightarrow \mathbb{R}$ that is linear an each $\sigma \in \Delta$. and $Q(|\Delta| \cap M) \subset \mathbb{Z}$.

It is convex if $Q(t u+(1-t) v) \geqslant t Q(u)+(1-t) Q(r)$. $\forall u, v \in \mid \Delta 1$ \& $t \in[0,1]$.

Ex:
Let $D=\sum a_{\rho} D_{\rho}$ be a cartier divider. On oren tonic attires $U_{o}^{=}$Sec we hem
$D l_{u_{\sigma}}=\operatorname{div}\left(x^{-m_{\sigma}}\right)$ kr some $m_{\sigma} \in M$, with $\left.\left(m_{\sigma}, u_{\rho}\right)=-a_{\rho}\right)$

The support function $Q_{0}:|\Delta| \rightarrow R$ of D is

$$
Q_{D}:|\Delta| \rightarrow \mathbb{R}
$$

$u \longmapsto\left(m_{\sigma}, u\right)$ when $u \in \sigma$.

Note: $\quad D=-\sum Q_{D}\left(u_{\rho}\right) D_{\rho}$.

$$
\begin{aligned}
& \left\{\begin{array}{c}
T \text {-invoricunt corker } \\
\text { dinisors }
\end{array}\right] \stackrel{1: 1}{\longrightarrow}\left\{\begin{array}{l}
\text { Pieceuise linear } \\
\text { Sunctions } R E: 1 \Delta 1 \rightarrow \pi
\end{array}\right\} \\
& D \quad \longrightarrow \quad Q_{0} \\
& \sum Q\left(u_{\rho}\right) D_{\rho} \\
& \longleftarrow Q
\end{aligned}
$$

Prop:
Let Δ be atan with $1 \Delta 1$ conoex and $\quad \operatorname{dim}|\Delta|=n=\operatorname{dim} M_{\Omega}$.

1) A T-inoriant weil diviscr ift it is given by a pieceurise linar fuction as above.

It D is T-costier with support functia Q_{D} :
2) D is basept free $\Leftrightarrow Q_{D}$ is convex
3) D is ample $\Leftrightarrow C_{D}$ sfrictly convex.

Detrinitiv: $Q_{D}(u+v)>Q_{D}(v)+Q_{D}(v)$
for all $u, v \in|\Sigma|$ not in the same care of Σ.

Main Exampe
Tane the tav of $\mathbb{P}_{x}^{\prime} \mathbb{P}_{x}^{\prime} \mathbb{P}^{\prime}$ in \mathbb{R}^{3}, Soanned by $\pm e_{1} \pm e_{2} \pm e_{3}$. Furtur sobdivide The $\mathbb{R}^{3} \geqslant 0$ pact of this tum by adding raus

$$
a=(2,1,1), b=(1,2,1), c=(1,1,2) \quad d=(1,1,1) .
$$

Mone a cone tang filing in as in the bollouning figune.

Claim : No arre divisos! ! dir

Suppose $D=\sum a_{\rho} D_{\rho}$ is arne and let φ_{D} be the corresponding PLF. In Particular $Q_{D}\left(e_{1}\right)=-a_{e_{1}}$

$$
\begin{aligned}
& Q_{0}\left(e_{2}\right)=a_{e_{2}} \\
& Q_{0}\left(e_{3}\right)=-a_{e_{3}}
\end{aligned}
$$

By replacing D with $D+\operatorname{dir}\left(x^{\left(-a_{e_{1},}-a_{e x}-a_{e_{3}}\right)}\right)$ we car assume $\quad Q_{0}\left(e_{i}\right)=0 \quad i=1,2,3$.

Note: $e_{1}+b=(2,2,1)=e_{2}+a$. $e_{1}, z b$ ore net in the same cane so by strict convexity

$$
Q_{D}\left(e_{1}+b\right)>Q_{D}\left(e_{1}\right)+Q_{D}(b)=Q_{D}(b)
$$

$e_{2} 8 a$ are in the some cone so

$$
\begin{aligned}
Q_{D}(a)=Q_{D}\left(e_{2}\right)+Q_{D}(a) & =\varphi_{D}\left(e_{2}+a\right) \\
& =Q_{D}\left(e_{1}+b\right) \\
& >Q_{D}(b)
\end{aligned}
$$

So $\quad Q_{0}(a)>Q_{0}(b)$.
Continue to get $Q_{D}(a)>Q_{D}(b)>Q_{D}(c)>Q_{D}(a)$

Contradiction

