

	ENERATIONS			RATIONALITY.
Biration	ol invoriants and	examples.		
Grother	ndieck ring of	icrieties and	the motivic	volume.
Strictly	toroidal models	ond degener	ations	
Degenera	ations of toric u	orieties.		
. . 				

DEF Smooth projective varieties X & Y over F are Stably birational over F if In, m & a birational map $X \times P_F^n \xrightarrow{-->} Y \times P_F^n$. X is Stably rational it it is stably birational to Spec F. me Determine it a voriety X is stably rational. Attempt 4: Find a non-trivial Stably bisational involuent. Let X be a smooth projective vonety/c. () Differential krows $H(X, \mathcal{D}_X)$ K>0. 2) The fundamental group TI, (X) Trivial kr rationally connected vorieties (E.g. Jano vorieties) (3) H (X, Z) torsian (Can distinguish between Unirational and rational) · Purely topological ! • (an relate it to Br(X), so also abit algebraic.

	Decomposition of the diagonal. (Condition in the chow group)
	() This involut Specializes:
Srec K	has a decomposition of the Olagonan, then the
Recall	General: Complement of Zariski closed (equiv. Zarishi aren) Very general: Complement of Countably many Zarishi closed. (equiv. Countable intersection of Zarishi arens)
(<u>HPT 16</u>)	family $X \longrightarrow C$ where $X \otimes C$ complex manifolds, C connected. fibers X_t are complex projective tarteds.
	· Very general liver Stably irrational.
	• Dense (evolution) set UCC S.t X_{ℓ} rational for all $t \in U$.
) Not possibly to get rid at very general.

Exc	mples										
Ω _{×e}	Hyne = ()(-	n-1	+9)), ````````````````````````````````````	stable	n : S	ratio	ral	kr	92u+	Concriccel bundle
		(lin f	act	ngt e	ven y	<i>cution</i>	surg	Canter	:red)	
	Wha	ob	εut	fano	<u>v</u> cn'e	ties	(w	- ۱ الاط	onplu	L, i.e	d < n above.)?
	ද්	20	 . 	 . 							- Stably irrational
	· · 5	 	 . <u>.</u>	· ·							t rational
			· ·	 			 . .	2	 . Z		* irrational.
	ა ა ა ა კ	• •			· *						[Totoro (6] d?, log_(n)+l (schreieder) => Stably ; reat.
			· ·		· ·						• Othern - Nicerise 19
		• •	· ·	· ·		• • •		• •	· ·	- dim	
			1	2	3	ંપ્	5	6	° ¥ 0 0		

Grothendieck ring & motivic volume

	The grathen dieck ring of varieties are a field F is denoted $K_0(Var_F)$ and generated by isomorphism classes of finite type F -schemes modulo relations [X : Z] = [X] - [Z] for $Z \subset X$ closed subscheme. Denote by $IL = [A_F^{\dagger}]$ the class of A . Ring structure : $[X] \cdot [Y] = [X \times_F Y]$. This cine is complicated if F is classbraically closed than there are	
	This ring is complicated. If F is adaptionalically closed than there are always O-divisors in the ring! X divite type F-scheme. Y <x bl,<br="" closed="" consider="" subscheme.="" the="">BlyX ~ $E \simeq X \cdot Y$ so $[BlyX - E] = [X \cdot Y]$ hence</x>	
Excmolo	$\begin{bmatrix} BL_{\gamma} \times \end{bmatrix} = \begin{bmatrix} \times \end{bmatrix} - \begin{bmatrix} Y \end{bmatrix} + \begin{bmatrix} E \end{bmatrix}$ $P^{n} - P^{n-1} \simeq A^{n}. So$	
	$\left[\mathcal{P}^{n}\right] = \left[\mathcal{P}^{n-1}\right] + \mathcal{U}^{n} = \mathcal{U}^{n+1} + \mathcal{U}^{n-1} + \mathcal{U} + 1 \qquad \left(7 = \left[\operatorname{Spec} F\right]\right)$	

DEF Let Z[SBF] be the free cibelion group on Stable biroltional
equivalence classes. Ring structure $[X]_{sb} \cdot [Y]_{sb} = [X \times_F Y]_{sb}$.
<u>Hence</u> K The above ring have no relations!! $[X]_{s5} = [Y]_{s5}$ if and only it X is stably birational to Y.
Key theorem (Larsen-Lunts)
Assume that F=0. Then there is a unique ring map
$Sb: K_0(Var_F) \longrightarrow \mathbb{Z}[SB_F]$
Such that for smooth and proper F-schemes X we have
$Sb([x]) = [X]_{Sb}$
Sb is surjective with kernel openerated by U.
$\underline{\text{Corollony}} K_{o}(Vor_{F}) \not/_{(L)} \simeq \mathbb{Z}[SB_{F}].$
Example Smooth and proper is important! • $L = [P'] - [Spec F]$ so $Sb(L) = Sb(P') - Sb(Spec F) = 0$
• $X \subset \mathbb{R}^2$ elliptic curve. $(X \subset \mathbb{R}^3 \text{ cone over } X \text{ Blaw up the vertex } p.$ (then the exceptional divisor is the curve X).

	[BLp CX] - [E] = [CX] - [Snec F] All these stably birational to X.
- · · · · · · · · · · · · · · · · · · ·	$Sb(cx) = [Some F]_{sb} \neq [CX]$ since CX is stably bir to X.
	Moders and degenerations
Let	$R = KI[+]], K = K((+))$ $K = \overline{K}$
	$R(\mathcal{D}) = \bigcup_{n \neq i} K[t^{in}] K(\mathcal{D}) = \bigcup_{n \neq i} K((t^{in})).$
Note	An R-scheme X->R have two libers.
	Generic fiber: XK, a scheme over K Special fiber: XK, a scheme over K.
	X_{K} $H_{X_{K}}$ Goal: Rejute rationality of X_{K} to X_{k} K K

DEF A monoid M is a foric monoid if it is the monorid of lattice points of a strictly convex rational polyhedral cone. I.e. Spac K[M] is a taric variety. DEF An R(00) - Scheme X is Strictly toroidal it Zusisni locally on X there are smooth morphisms $\mathcal{R} \longrightarrow \operatorname{Spec} \left(\frac{R(\infty)[M]}{(t^2 - \chi^m)} \right)$ where ge@, meM, M is a toric monoid, and Shoc $\frac{R(\infty)[M]}{(X^{M})}$ is reduced. Think of X as a scheme where the special fiber "lark" line a toric banding. We allow Singularities but they should be "close" to foric Singularities.

Examples (7) X a regular R-scheme with Smooth Special fiber. Then X×RR(00) is strictly toroidal. 2) E a regular R-schene with Strict normal Crossing, then $\mathcal{X}_{R} \mathcal{R}(\infty)$ is strictly toroidal. (Usually called Strictly semi-stable). Snec X c R[X, y] defined by t-xy. Generic liber is a snorth conic and the Special fiber is the union of two lines ي ده م کل کل ده K K R DEF For X Strictly toroidal with Special Sizer X, a Stratum of X k is a connected component of an intersection Of interscible components in Xx. Let S(X) denote the set of Strata.

Theorem (Nicaise - Shinds) There is a unique ring map $V_{01}: K_{0}(V_{\alpha}(K_{(m)})) \longrightarrow K_{0}(V_{\alpha}(K_{(m)}))$ Such that fer even X me have $V_{O}((\mathcal{X}_{K(\infty)}) = \sum_{E \in SC \times C} (-1)^{CODME} [E].$ Moreover we have an induced map Z[SBK(00)] Volso 7/[SBK] $Vol_{SD}(\mathcal{X}_{K(no)}) = \sum_{E \in S(\mathcal{X})} Codim E[E]_{SD}$ Such that Ko(Varkie) - Var Ko(Vark) Jer C Z[SBIKCOD] - VOISD > Z[SB]

Volsb ([Spec K(00)]]) = [Spec K]_5b => 17 X is strictly toroidal and $\sum_{(-1)}^{\operatorname{odim} E} [E]_{SB} \neq [S_{\operatorname{rec}} K]_{SB}$ $E \in S(\mathbb{X})$ then It is not stably rational. Example 27=03 a quortie surface in IP.³ Let 91,92 be Very general quadric polynomicals. Thu is Strictly toroidal. $\mathcal{F} = \{t\} + \{q_1, q_2 = 0\} \subset \mathbb{P}^{\mathcal{S}}_{\mathcal{R}(\infty)}$ Xx = {q1q2=0} the union of two quadric Surfaces Q, & Q2. Q, nQz is an elliptic Curve. We get: $\operatorname{Vol}_{Sb}(\mathcal{X}_{K(\infty)}) = [Q_{1}]_{Sb} + [Q_{2}]_{Sb} - [Q_{2} \cap Q_{1}]_{Sb}$ = $2\left[S_{\text{rec}} \times \right]_{S_{\overline{b}}} \left[Q_{2} \cap Q_{1}\right]_{S_{\overline{b}}}$ this is [Spec 2] iff Q2nQ, stady rational. Not possible

So a very general quartic surface is starbly irrational. A hondy result S Noetherian OD-scheme. $X \rightarrow S$ smooth and proper. Then the set of SES 54 X xs 5 Stably rational kr 5 geometric Point over ses is a curriable union of closed sets. Exame: 21++9,92=03=XCAXR³ All lisers one Smooth except t=0. So X-Xo -> A'-C is smeath and grover. Above we some that XKC00) was stably insational. This is a geometric fiber over the generic point so we have a non-stably rational fizer. -) Very general liber is not stably rational. => This implies the existence of stably irrational liber over the field k.

Example: X2 CP a smooth hypersurbace of degree d. If X2 is stady irrational then a very general hypersorten Of degree d' is stably irrational. Tane parameter space p^N fer degree d'hypersurbaces. Let U be the smooth locus. Let Y -> U be the universal barning. Then Y-sU is smooth, proper, and be some xeU the fiber is Xy which is St. irrational. 2-> very general hypersurface of degree d is stably irrational WHAT HAVE WE DONE? C a parameter space of vors/k. Won't to Show that very general members are stably irrational. Construct a Strictly toroidal model X s.t 1) XK Smooth K-schune of type C 2) X_{k} satisfies $\sum_{E \in SCX} (-1) \sum_{E \in SCX} \pm [Srec K]_{Sb}$ Theorem => XK starty irrectional over K. Corolling =) Get Smooth stably irrational schemes in C over K.

	Using this	one reduces	the question	n ch ratio	mality to	Known
	examples.	One connect	r Construct	explicit e	examples.	
						· · · · · · · · · · · ·
	 	Toric De	EGENERATI	ons		
				T		· · · · · · · · · ·
		e Polytope (
	royective	venety 11		n an ang		md(e I(D)).
Excup(<u>e</u>					
· · ·	• · · · · •	· • · • · //	Lattice Po	ints in th	e one d	etines a
. C .			Monoid	M gen	مدمدنوط	by
	(@,)) <mark>•</mark> .	(1,1)	(0,1),(0,0			
	لان رەر	۲. ۲.				
	(۱٫۱) م	[(ه. ۲		ation X	(m, r,) (m · K	$(x_{1}, x_{1}, x_{1},$
K[M] = κ[χ ^(ο, ι)	, ¥ · J	uith multiple ne dag)	(m_1r) $\zeta = r$		
		<u> </u>				

$\mathcal{P}_{\kappa}(\Lambda) = \operatorname{Proj}_{\kappa}(\Lambda) \simeq \mathcal{P}'$. $\mathcal{I}(\Lambda) = \mathcal{O}_{\kappa}(\Lambda)$

(0,0,1) => $\frac{(1,0,1)}{\pi}$ Lattice points in this cone derm a monoid M (0,0,1) => $\frac{1}{\pi}$ $\frac{1}{(0,1,1)}$ $\frac{1}{\pi}$ $\frac{1}{(0,1,1)}$ and (1,0,1), Excupe (0,1) (1,0) (0,0,0) $\kappa[m] = \kappa[\chi^{(0,0,1)}, \chi^{(0,1,1)}, \chi^{(1,0,1)}]$ with multiplication $\chi^m \cdot \chi^m = \chi^m$ and $\deg \chi = r_ P(\Lambda) := Proj(\kappa[M]) \cong \mathbb{P}^2$, $\chi(\Lambda) = O_{p2}(1)$. (a,a) Gives B^2 with $\chi(\Delta) = Q(d)$. Example Scaring to

Exangle $\begin{array}{c} (0,1) \\ (0,1) \\ (0,1) \\ (0,0) \\ (1,0) \\ (0,0,0) \\ (0,0,0) \end{array}$ Monoid M generated by (0,0,0) (1,0,1) (0,1,1) (0,0,1)and (1,1,1). $\simeq K[x, y, z, w]$ $(yz - xw) \simeq P'_{x} P' \longrightarrow P^{3}$ $P_{\kappa}(\Delta) \simeq P'_{\lambda} P' \qquad \mathcal{I}(\Delta) = \mathcal{O}(1,1).$ DEGENERATING THE TORIC VARIETIES U c Z lattic Polytope. A Polyhedical Subdivision of B is a set) of subpdytopes of & s.t () &, B e P => & n B e P · P is integral it are P are all lattice polytopes. • P is requirer is there is a piecewise linear function $D \rightarrow R$ s.t the offine domains is the faces of P.

Exaple Not vauid. Vouid. Not varie. Let X denote the zero locus of a very general Section $S \in H^2(Z(D))$. Any integral regular Polyhedral Subdivision Of the lattice polytope () induces a degeneration of X. Example \mathbb{P}^2 X is a bidegree (1,1) hypersurduce in \mathbb{P}^2 R' $\mathbb{P}'_{\times}\mathbb{P}^!$ R'x R' ~~> R' v R' meeting in R' x ~ H, u Hz meeting in a bint. COW TALK TODAY 5pm.