

$\mathrm{UiO}:$ Department of Mathematics University of Oslo

Around Ragsdale conjecture

 and the topology of real plane algebraic curves
UiO : Department of Mathematics
 University of Oslo

Positive and negative locus of a real polynomial

Let $C=V(f) \subset \mathbb{P}_{\mathbb{R}}^{2}$ be a smooth real algebraic curve of $\mathbb{P}_{\mathbb{R}}^{2}$ defined by a homogeneous polynomial $f \in \mathbb{R}\left[x_{0}, x_{1}, x_{2}\right]$ of even degree.

UiO : Department of Mathematics
 University of Oslo

Positive and negative locus of a real polynomial

Let $C=V(f) \subset \mathbb{P}_{\mathbb{R}}^{2}$ be a smooth real algebraic curve of $\mathbb{P}_{\mathbb{R}}^{2}$ defined by a homogeneous polynomial $f \in \mathbb{R}\left[x_{0}, x_{1}, x_{2}\right]$ of even degree.
Let $P, N \subset \mathbb{P}^{2}(\mathbb{R}) \backslash C(\mathbb{R})$ be the set of real points x such that $f(x)>0($ resp. $f(x)<0)$.

UiO : Department of Mathematics
 University of Oslo

Positive and negative locus of a real polynomial

Let $C=V(f) \subset \mathbb{P}_{\mathbb{R}}^{2}$ be a smooth real algebraic curve of $\mathbb{P}_{\mathbb{R}}^{2}$ defined by a homogeneous polynomial $f \in \mathbb{R}\left[x_{0}, x_{1}, x_{2}\right]$ of even degree.
Let $P, N \subset \mathbb{P}^{2}(\mathbb{R}) \backslash C(\mathbb{R})$ be the set of real points x such that $f(x)>0($ resp. $f(x)<0)$.

Questions

How many connected components does P and N have?

Positive and negative locus of a real polynomial

Let $C=V(f) \subset \mathbb{P}_{\mathbb{R}}^{2}$ be a smooth real algebraic curve of $\mathbb{P}_{\mathbb{R}}^{2}$ defined by a homogeneous polynomial $f \in \mathbb{R}\left[x_{0}, x_{1}, x_{2}\right]$ of even degree.
Let $P, N \subset \mathbb{P}^{2}(\mathbb{R}) \backslash C(\mathbb{R})$ be the set of real points x such that $f(x)>0($ resp. $f(x)<0)$.

Questions

- How many connected components does P and N have?
- What is the repartition of these connected components?

Reformulation in terms of ovals

Let C be a real algebraic curve in $\mathbb{P}_{\mathbb{R}}^{2}$, with non-empty real part.

UiO : Department of Mathematics University of Oslo

Reformulation in terms of ovals

Let C be a real algebraic curve in $\mathbb{P}_{\mathbb{R}}^{2}$, with non-empty real part.
Let C_{1}, \ldots, C_{r} be the connected components of $C(\mathbb{R})$.

UiO : Department of Mathematics University of Oslo

Reformulation in terms of ovals

Let C be a real algebraic curve in $\mathbb{P}_{\mathbb{R}}^{2}$, with non-empty real part.
Let C_{1}, \ldots, C_{r} be the connected components of $C(\mathbb{R})$.
All these connected components are homeomorphic to S^{1}.

Reformulation in terms of ovals

Let C be a real algebraic curve in $\mathbb{P}_{\mathbb{R}}^{2}$, with non-empty real part.
Let C_{1}, \ldots, C_{r} be the connected components of $C(\mathbb{R})$.
All these connected components are homeomorphic to S^{1}.
We say that a component C_{i} is an oval if it divides $\mathbb{P}^{2}(\mathbb{R})$ into two connected components, and a pseudo-line otherwise.

Reformulation in terms of ovals

Let C be a real algebraic curve in $\mathbb{P}_{\mathbb{R}}^{2}$, with non-empty real part.
Let C_{1}, \ldots, C_{r} be the connected components of $C(\mathbb{R})$.
All these connected components are homeomorphic to S^{1}.
We say that a component C_{i} is an oval if it divides $\mathbb{P}^{2}(\mathbb{R})$ into two connected components, and a pseudo-line otherwise.
If C is of even degree, all components C_{i} of $C(\mathbb{R})$ are ovals.

Reformulation in terms of ovals

Let C be a real algebraic curve in $\mathbb{P}_{\mathbb{R}}^{2}$, with non-empty real part.
Let C_{1}, \ldots, C_{r} be the connected components of $C(\mathbb{R})$.
All these connected components are homeomorphic to S^{1}.
We say that a component C_{i} is an oval if it divides $\mathbb{P}^{2}(\mathbb{R})$ into two connected components, and a pseudo-line otherwise.
If C is of even degree, all components C_{i} of $C(\mathbb{R})$ are ovals.
We say that an oval is even if it is contained in the interior of an even number of ovals, and odd otherwise.

Reformulation in terms of ovals

Let C be a real algebraic curve in $\mathbb{P}_{\mathbb{R}}^{2}$, with non-empty real part.
Let C_{1}, \ldots, C_{r} be the connected components of $C(\mathbb{R})$.
All these connected components are homeomorphic to S^{1}.
We say that a component C_{i} is an oval if it divides $\mathbb{P}^{2}(\mathbb{R})$ into two connected components, and a pseudo-line otherwise.
If C is of even degree, all components C_{i} of $C(\mathbb{R})$ are ovals.
We say that an oval is even if it is contained in the interior of an even number of ovals, and odd otherwise.

Questions

- How many even and odd ovals does C have ?
- What is the repartion of these ovals ?

Relation to 16th Hilbert problem

In 1900, Hilbert asked the following question:

Relation to 16th Hilbert problem

In 1900, Hilbert asked the following question:

Generalisation of 16th Hilbert problem (part 1)

What are the possible relative positions of the components of a real algebraic plane curve?

Relation to 16th Hilbert problem

In 1900, Hilbert asked the following question:

Generalisation of 16th Hilbert problem (part 1)

What are the possible relative positions of the components of a real algebraic plane curve?

If we know the complete classification for a certain degree, the other questions follow.

Relation to 16th Hilbert problem

In 1900, Hilbert asked the following question:

Generalisation of 16th Hilbert problem (part 1)

What are the possible relative positions of the components of a real algebraic plane curve?

If we know the complete classification for a certain degree, the other questions follow.

The answer was already known up to degree 5, so the question was initially asked for degree 6 curves

UiO : Department of Mathematics
 University of Oslo

Solution up to degree 5

■ In degree 1, the only possibility is J (with J representing a pseudo-line;

UiO : Department of Mathematics University of Oslo

Solution up to degree 5

■ In degree 1 , the only possibility is J (with J representing a pseudo-line;

- In degree 2, the two possibilities are $\emptyset, 1$ (where the second case means 1 oval);

UiO : Department of Mathematics University of Oslo

Solution up to degree 5

■ In degree 1 , the only possibility is J (with J representing a pseudo-line;
■ In degree 2, the two possibilities are $\emptyset, 1$ (where the second case means 1 oval);
■ In degree 3 , we have either J or $J \sqcup 1$;

UiO : Department of Mathematics
 University of Oslo

Solution up to degree 5

■ In degree 1, the only possibility is J (with J representing a pseudo-line;

- In degree 2, the two possibilities are Ø, 1 (where the second case means 1 oval);
\square In degree 3 , we have either J or $J \sqcup 1$;
\square In degree 4, the possibilities are $\emptyset, 1,2,1\langle 1\rangle, 3,4$ (where $1\langle 1\rangle$ denotes an oval containing an other oval);

UiO : Department of Mathematics
 University of Oslo

Solution up to degree 5

■ In degree 1, the only possibility is J (with J representing a pseudo-line;

- In degree 2, the two possibilities are Ø, 1 (where the second case means 1 oval);
\square In degree 3 , we have either J or $J \sqcup 1$;
■ In degree 4, the possibilities are $\emptyset, 1,2,1\langle 1\rangle, 3,4$ (where $1\langle 1\rangle$ denotes an oval containing an other oval);
- In degree 5, the possibilities are
$J, J \sqcup 1, J \sqcup 2, J \sqcup 1\langle 1\rangle, J \sqcup 3, J \sqcup 4, J \sqcup 5, J \sqcup 6$.

UiO : Department of Mathematics
 University of Oslo

Bézout type restriction

UiO : Department of Mathematics

University of Oslo

Bézout type restriction

UiO : Department of Mathematics

University of Oslo

Harnack's construction

UiO : Department of Mathematics

University of Oslo

Harnack's construction

UiO : Department of Mathematics

University of Oslo

Harnack's construction

UiO : Department of Mathematics
 University of Oslo

Examples in degree 6

Harnack's sextic

Gudkov's sextic

Hilbert's sextic

UiO : Department of Mathematics
 University of Oslo

Examples in degree 6

Harnack's sextic
$9 \sqcup 1\langle 1\rangle$

Gudkov's sextic
$5 \sqcup 1\langle 1\rangle$

Hilbert's sextic
$1 \sqcup 1\langle 9\rangle$

UiO : Department of Mathematics
 University of Oslo

Topological restrictions and Ragsdale conjecture

■ Harnack's bound: For C be a real algebraic curve,

$$
b_{0}(\mathbb{R} C) \leq g(\mathbb{C} C)+1
$$

UiO : Department of Mathematics
 University of Oslo

Topological restrictions and Ragsdale conjecture

■ Harnack's bound: For C be a real algebraic curve,

$$
b_{0}(\mathbb{R} C) \leq g(\mathbb{C} C)+1
$$

■ Petrovsky's inequalities: For C a real algebraic curve in $\mathbb{P}_{\mathbb{R}}^{2}$ of even degree $2 k$ and p, n the number of even, odd ovals of C, we have

$$
p-n \leq \frac{3 k^{2}-3 k}{2}+1, \quad n-p \leq \frac{3 k^{2}-3 k}{2}
$$

UiO : Department of Mathematics
 University of Oslo

Topological restrictions and Ragsdale conjecture

■ Harnack's bound: For C be a real algebraic curve,

$$
b_{0}(\mathbb{R} C) \leq g(\mathbb{C} C)+1
$$

■ Petrovsky's inequalities: For C a real algebraic curve in $\mathbb{P}_{\mathbb{R}}^{2}$ of even degree $2 k$ and p, n the number of even, odd ovals of C, we have

$$
p-n \leq \frac{3 k^{2}-3 k}{2}+1, \quad n-p \leq \frac{3 k^{2}-3 k}{2}
$$

■ Ragsdale/Petrovsky's conjecture: with the same hypotheses as above,

$$
p \leq \frac{3 k^{2}-3 k}{2}+1, \quad n \leq \frac{3 k^{2}-3 k}{2}(+1)
$$

UiO : Department of Mathematics
 University of Oslo

Return to degree 6 examples

The genus of a degree $2 k=6$ plane curve is 10 , hence a maximal curve (in Harnack's sense) of degree 6 has 11 ovals.

UiO : Department of Mathematics
 University of Oslo

Return to degree 6 examples

The genus of a degree $2 k=6$ plane curve is 10 , hence a maximal curve (in Harnack's sense) of degree 6 has 11 ovals.

UiO : Department of Mathematics
 University of Oslo

Return to degree 6 examples

The genus of a degree $2 k=6$ plane curve is 10 , hence a maximal curve (in Harnack's sense) of degree 6 has 11 ovals.

$p=\frac{3 k^{2}-3 k}{2}+1=10$

(Not interesting here)

$$
n=\frac{3 k^{2}-3 k}{2}=9
$$

UiO : Department of Mathematics
 University of Oslo

Isotopy classification up to degree 7

From the classification given before, Ragsdale conjecture is true in degree 2 and 4.

Isotopy classification up to degree 7

From the classification given before, Ragsdale conjecture is true in degree 2 and 4.
In 1969, Gudkov completed the classification for degree 6 curves (64 isotopy types), from which we obtain that Ragsdale conjecture is true in degree 6.

Isotopy classification up to degree 7

From the classification given before, Ragsdale conjecture is true in degree 2 and 4.
In 1969, Gudkov completed the classification for degree 6 curves (64 isotopy types), from which we obtain that Ragsdale conjecture is true in degree 6.
Viro completed the classification for degree 7 curves (1980), using new constructions techniques (121 isotopy types).

Isotopy classification up to degree 7

From the classification given before, Ragsdale conjecture is true in degree 2 and 4.
In 1969, Gudkov completed the classification for degree 6 curves (64 isotopy types), from which we obtain that Ragsdale conjecture is true in degree 6.
Viro completed the classification for degree 7 curves (1980), using new constructions techniques (121 isotopy types).
Starting from degree 8, no complete classification is known (at least in algebraic case).

UiO : Department of Mathematics
 University of Oslo

First "small" counter-examples in degree 8

Theorem (Viro, 1980)
For every $k \geq 4$ even, there exist maximal curves of degree $2 k \geq 8$ satisfying $n=\frac{3 k^{2}-3 k}{2}+1$.

UiO : Department of Mathematics
 University of Oslo

First "small" counter-examples in degree 8

Theorem (Viro, 1980)
For every $k \geq 4$ even, there exist maximal curves of degree $2 k \geq 8$ satisfying $n=\frac{3 k^{2}-3 k}{2}+1$.

We get here that Ragsdale conjecture is false, but Petrovsky's conjecture is still satisfied.

UiO : Department of Mathematics

University of Oslo

Smoothing complicated singularities

Itenberg's counter-examples

Theorem (ltenberg, 1993)

For every $k \geq 5$, there exists a non-singular real algebraic curve of degree $2 k$ satisfying

$$
p=\frac{3 k^{2}-3 k}{2}+1+\left\lfloor\frac{(k-3)^{2}+4}{8}\right\rfloor .
$$

Itenberg's counter-examples

Theorem (ltenberg, 1993)

For every $k \geq 5$, there exists a non-singular real algebraic curve of degree $2 k$ satisfying

$$
p=\frac{3 k^{2}-3 k}{2}+1+\left\lfloor\frac{(k-3)^{2}+4}{8}\right\rfloor .
$$

For every $k \geq 5$, there exists a non-singular real algebraic curve of degree $2 k$ satisfying

$$
n=\frac{3 k^{2}-3 k}{2}+1+\left\lfloor\frac{(k-3)^{2}+4}{8}\right\rfloor-1
$$

UiO : Department of Mathematics

University of Oslo

Combinatorial patchworking

UiO : Department of Mathematics

University of Oslo

Combinatorial patchworking

UiO : Department of Mathematics

University of Oslo

Combinatorial patchworking

UiO : Department of Mathematics

University of Oslo

Combinatorial patchworking

UiO : Department of Mathematics

University of Oslo

Combinatorial patchworking

UiO : Department of Mathematics

University of Oslo

Combinatorial patchworking

UiO : Department of Mathematics
 University of Oslo

Combinatorial patchworking

UiO : Department of Mathematics

University of Oslo

Itenberg's construction in degree 10

UiO : Department of Mathematics
 University of Oslo

Open questions

Combining Harnack and Petrovsky's inequalities, we obtain the bounds

$$
p \leq \frac{7 k^{2}-9 k+6}{4}, \quad n \leq \frac{7 k^{2}-9 k+4}{4} .
$$

UiO : Department of Mathematics
 University of Oslo

Open questions

Combining Harnack and Petrovsky's inequalities, we obtain the bounds

$$
p \leq \frac{7 k^{2}-9 k+6}{4}, \quad n \leq \frac{7 k^{2}-9 k+4}{4} .
$$

Questions

- Is the Harnack-Petrovsky bound sharp ?

UiO : Department of Mathematics
 University of Oslo

Open questions

Combining Harnack and Petrovsky's inequalities, we obtain the bounds

$$
p \leq \frac{7 k^{2}-9 k+6}{4}, \quad n \leq \frac{7 k^{2}-9 k+4}{4} .
$$

Questions

- Is the Harnack-Petrovsky bound sharp ?

■ Do we have counter-examples for maximal curves ?

Partial answers

Theorem (Brugallé, 2006)

The Harnack-Petrovsky bound is asymptotically sharp.

Partial answers

Theorem (Brugallé, 2006)

The Harnack-Petrovsky bound is asymptotically sharp.

Theorem (Haas, 1997)

Any maximal curve obtained by combinatorial patchworking satisfies

$$
p \leq \frac{3 k^{2}-3 k}{2}+1, \quad n \leq \frac{3 k^{2}-3 k}{2}+4 .
$$

No example of maximal curve with $n>\frac{3 k^{2}-3 k}{2}+1$ is known.

Best examples in low degree

Theorem (Haas, 1995)

For every $k \geq 5$, there exists a non-singular real algebraic curve of degree $2 k$ satisfying

$$
p=\frac{3 k^{2}-3 k}{2}+1+\left\lfloor\frac{k^{2}-7 k+16}{6}\right\rfloor .
$$

UiO : Department of Mathematics
 University of Oslo

Best examples in low degree

Theorem (Haas, 1995)

For every $k \geq 5$, there exists a non-singular real algebraic curve of degree $2 k$ satisfying

$$
p=\frac{3 k^{2}-3 k}{2}+1+\left\lfloor\frac{k^{2}-7 k+16}{6}\right\rfloor .
$$

Can add a term of order $\frac{k^{2}}{48}$ by some additional construction of Itenberg.

Best examples in low degree

Theorem (LT., 2021)

For every $k \geq 5$, there exists a non-singular real algebraic curve of degree $2 k$ satisfying

$$
p \simeq \frac{3 k^{2}-3 k}{2}+1+\frac{k^{2}-5 k+5+(-1)^{k}}{6} .
$$

(The real formula is horrible)

Best examples in low degree

Theorem (LT., 2021)

For every $k \geq 5$, there exists a non-singular real algebraic curve of degree $2 k$ satisfying

$$
p \simeq \frac{3 k^{2}-3 k}{2}+1+\frac{k^{2}-5 k+5+(-1)^{k}}{6} .
$$

(The real formula is horrible)
Can (maybe) add a term of order $\frac{k^{2}}{48}$ by some additional construction of Itenberg.

UiO : Department of Mathematics

University of Oslo

Construction in degree 14

UiO : Department of Mathematics

University of Oslo
R Brugallé, Erwan, Real plane algebraic curves with asymptotically maximal number of even ovals, Duke Mathematical Journal 131.3 (2006): 575-587.

D Dmitrii Andreevich Gudkov, The arrangement of the ovals of a sixth order curve, Doklady Akademii Nauk. Vol. 185. No. 2. Russian Academy of Sciences, 1969.

- Bertrand Haas, Les multilucarnes: nouveaux contre-exemples à la conjecture de Ragsdale, Comptes rendus de l'Académie des sciences. Série 1, Mathématique 320.12 (1995): 1507-1512.

固 Bertrand Haas, Real algebraic curves and combinatorial constructions, Thèse doctorale, Université de Strasbourg, 1997

國 Ilia Itenberg, Contre-exemples à la conjecture de Ragsdale, C. R. Acad. Sci. Paris, 317, Sér. I (1993), 277-282.

UiO : Department of Mathematics

University of Oslo
E Oleg Viro, Curves of degree 7, curves of degree 8, and the Ragsdale conjecture, Dokl. Akad. Nauk SSSR, Volume 254, Number 6, Pages 1306-1310, 1980.

UiO 8 Department of Mathematics University of Oslo

Cédric Le Texier

Around Ragsdale conjecture
and the topology of real plane algebraic curves

