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Positive and negative locus of a real
polynomial
Let C = V (f ) ⊂ P2

R be a smooth real algebraic curve of P2
R defined

by a homogeneous polynomial f ∈ R[x0, x1, x2] of even degree.

Let P,N ⊂ P2(R)\C(R) be the set of real points x such that
f (x) >0 (resp. f (x) <0).

Questions

How many connected components does P and N have ?
What is the repartition of these connected components ?
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Reformulation in terms of ovals
Let C be a real algebraic curve in P2

R, with non-empty real part.

Let C1, . . . ,Cr be the connected components of C(R).
All these connected components are homeomorphic to S1.

We say that a component Ci is an oval if it divides P2(R) into two
connected components, and a pseudo-line otherwise.

If C is of even degree, all components Ci of C(R) are ovals.

We say that an oval is even if it is contained in the interior of an
even number of ovals, and odd otherwise.

Questions

How many even and odd ovals does C have ?
What is the repartion of these ovals ?
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Relation to 16th Hilbert problem
In 1900, Hilbert asked the following question:

Generalisation of 16th Hilbert problem (part 1)

What are the possible relative positions of the components of a
real algebraic plane curve?

If we know the complete classification for a certain degree, the
other questions follow.

The answer was already known up to degree 5, so the question was
initially asked for degree 6 curves
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Solution up to degree 5
In degree 1, the only possibility is J (with J representing a
pseudo-line;

In degree 2, the two possibilities are ∅,1 (where the second
case means 1 oval);
In degree 3, we have either J or J t 1;
In degree 4, the possibilities are ∅, 1, 2, 1〈1〉, 3, 4 (where 1〈1〉
denotes an oval containing an other oval);
In degree 5, the possibilities are
J , J t 1, J t 2, J t 1〈1〉, J t 3, J t 4, J t 5, J t 6.
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Bézout type restriction
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Harnack’s construction
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Examples in degree 6

Figure 5: Maximal perturbations of the triple of ellipses shown in Figure 3.

6 Complex Vision of Real Curves

A real algebraic curve is something more than just the set of its real points
{(x, y) 2 R2 : f(x, y) = 0}. It also has imaginary points, i.e., points of the
complex plane C2 satisfying the same equation f(x, y) = 0. When studying the
topology of the set of real points of a curve, it is very useful to keep in mind
the set of all its complex points.

Proofs of most prohibitions of the prohibitions stated in Section 5 demand
consideration of the set of complex points. However, it is impossible to confine
the complex domain to the proofs. Sooner or later, it shows up in the formu-
lations. Without a complex vision many phenomena in the real domain are
impossible to describe.

Topologically the set of complex points of a real curve is a surface, which
may have a finite number of (imaginary) singular points. By a perturbation
of the equation one can make the set of complex points topologically standard:
homeomorphic to a sphere with 1

2 (m°1)(m°2) handles punctured at m points.
Since a perturbation does not change the topology of the set of real points, we
assume that such a perturbation has been done.

As a result, the set of real points of a curve can lie in the set of its complex
points in two ways. It may happen that the former divides the latter into two
connected halves, which are interchanged by the complex conjugation involution
C2 ! C2 : (z, w) 7! (z̄, w̄). In this case the curve is said to be of type I, or
dividing. Otherwise, the complement of the set of real points of the curve in the
set of its complex points is connected. Then the curve is said to be of type II,
or nondividing.

An ellipse is of type I: its set of complex points is homeomorphic to S1 £R,
the real part lies in it as the fiber S1 £ 0, and the conjugation acts as the
symmetry (z, t) 7! (z,°t). A curve of degree 2 without real points is of type II:
the empty set cannot divide anything.

A curve of degree m with 1
2 (m ° 1)(m ° 2) + 1 ovals (recall that this is

the maximal number of ovals for degree m) is of type I, because that many
ovals necessarily divide a sphere with 1

2 (m ° 1)(m ° 2) handles. In fact a
similar argument proves the Harnack inequality: a sphere with 1

2 (m°1)(m°2)
handles cannot be divided into less than three connected pieces by a collection
of > 1

2 (m ° 1)(m ° 2) + 1 disjoint embedded circles. Furthermore, the number
of ovals of a dividing curve of degree m = 2k is congruent to k modulo 2. This

7

Harnack’s sextic Gudkov’s sextic Hilbert’s sextic

9 t 1〈1〉 5 t 1〈1〉 1 t 1〈9〉
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Topological restrictions and Ragsdale
conjecture

Harnack’s bound: For C be a real algebraic curve,

b0(RC) ≤ g(CC) + 1.

Petrovsky’s inequalities: For C a real algebraic curve in P2
R

of even degree 2k and p, n the number of even, odd ovals of
C, we have

p − n ≤ 3k2 − 3k
2

+ 1, n − p ≤ 3k2 − 3k
2

Ragsdale/Petrovsky’s conjecture: with the same hypotheses
as above,

p ≤ 3k2 − 3k
2

+ 1, n ≤ 3k2 − 3k
2

(+1).
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Return to degree 6 examples
The genus of a degree 2k = 6 plane curve is 10, hence a maximal
curve (in Harnack’s sense) of degree 6 has 11 ovals.

Figure 5: Maximal perturbations of the triple of ellipses shown in Figure 3.

6 Complex Vision of Real Curves

A real algebraic curve is something more than just the set of its real points
{(x, y) 2 R2 : f(x, y) = 0}. It also has imaginary points, i.e., points of the
complex plane C2 satisfying the same equation f(x, y) = 0. When studying the
topology of the set of real points of a curve, it is very useful to keep in mind
the set of all its complex points.

Proofs of most prohibitions of the prohibitions stated in Section 5 demand
consideration of the set of complex points. However, it is impossible to confine
the complex domain to the proofs. Sooner or later, it shows up in the formu-
lations. Without a complex vision many phenomena in the real domain are
impossible to describe.

Topologically the set of complex points of a real curve is a surface, which
may have a finite number of (imaginary) singular points. By a perturbation
of the equation one can make the set of complex points topologically standard:
homeomorphic to a sphere with 1

2 (m°1)(m°2) handles punctured at m points.
Since a perturbation does not change the topology of the set of real points, we
assume that such a perturbation has been done.

As a result, the set of real points of a curve can lie in the set of its complex
points in two ways. It may happen that the former divides the latter into two
connected halves, which are interchanged by the complex conjugation involution
C2 ! C2 : (z, w) 7! (z̄, w̄). In this case the curve is said to be of type I, or
dividing. Otherwise, the complement of the set of real points of the curve in the
set of its complex points is connected. Then the curve is said to be of type II,
or nondividing.

An ellipse is of type I: its set of complex points is homeomorphic to S1 £R,
the real part lies in it as the fiber S1 £ 0, and the conjugation acts as the
symmetry (z, t) 7! (z,°t). A curve of degree 2 without real points is of type II:
the empty set cannot divide anything.

A curve of degree m with 1
2 (m ° 1)(m ° 2) + 1 ovals (recall that this is

the maximal number of ovals for degree m) is of type I, because that many
ovals necessarily divide a sphere with 1

2 (m ° 1)(m ° 2) handles. In fact a
similar argument proves the Harnack inequality: a sphere with 1

2 (m°1)(m°2)
handles cannot be divided into less than three connected pieces by a collection
of > 1

2 (m ° 1)(m ° 2) + 1 disjoint embedded circles. Furthermore, the number
of ovals of a dividing curve of degree m = 2k is congruent to k modulo 2. This

7

p = 3k2−3k
2 +1 = 10

(Not interesting
here) n = 3k2−3k

2 = 9
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Isotopy classification up to degree 7
From the classification given before, Ragsdale conjecture is true in
degree 2 and 4.

In 1969, Gudkov completed the classification for degree 6 curves
(64 isotopy types), from which we obtain that Ragsdale conjecture
is true in degree 6.

Viro completed the classification for degree 7 curves (1980), using
new constructions techniques (121 isotopy types).

Starting from degree 8, no complete classification is known (at least
in algebraic case).
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First "small" counter-examples in
degree 8

Theorem (Viro, 1980)

For every k ≥ 4 even, there exist maximal curves of degree 2k ≥ 8
satisfying n = 3k2−3k

2 + 1.

We get here that Ragsdale conjecture is false, but Petrovsky’s
conjecture is still satisfied.
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Smoothing complicated singularities
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Itenberg’s counter-examples

Theorem (Itenberg, 1993)

For every k ≥ 5, there exists a non-singular real algebraic curve
of degree 2k satisfying

p =
3k2 − 3k

2
+ 1 +

⌊
(k − 3)2 + 4

8

⌋
.

For every k ≥ 5, there exists a non-singular real algebraic curve
of degree 2k satisfying

n =
3k2 − 3k

2
+ 1 +

⌊
(k − 3)2 + 4

8

⌋
− 1.
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Combinatorial patchworking

(2,0)

(0,2)

(0,0)
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Combinatorial patchworking

(2,0)(1,0)

(1,1)
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Combinatorial patchworking

+ + +

+
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Combinatorial patchworking
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Itenberg’s construction in degree 10
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Open questions
Combining Harnack and Petrovsky’s inequalities, we obtain the
bounds

p ≤ 7k2 − 9k + 6
4

, n ≤ 7k2 − 9k + 4
4

.

Questions

Is the Harnack-Petrovsky bound sharp ?
Do we have counter-examples for maximal curves ?
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Partial answers

Theorem (Brugallé, 2006)

The Harnack-Petrovsky bound is asymptotically sharp.

Theorem (Haas, 1997)

Any maximal curve obtained by combinatorial patchworking satis-
fies

p ≤ 3k2 − 3k
2

+ 1, n ≤ 3k2 − 3k
2

+ 4.

No example of maximal curve with n > 3k2−3k
2 + 1 is known.
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Best examples in low degree

Theorem (Haas, 1995)

For every k ≥ 5, there exists a non-singular real algebraic curve
of degree 2k satisfying

p =
3k2 − 3k

2
+ 1 +

⌊
k2 − 7k + 16

6

⌋
.

Can add a term of order k2

48 by some additional construction of
Itenberg.
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Best examples in low degree

Theorem (LT., 2021)

For every k ≥ 5, there exists a non-singular real algebraic curve
of degree 2k satisfying

p ' 3k2 − 3k
2

+ 1 +
k2 − 5k + 5 + (−1)k

6
.

(The real formula is horrible)

Can (maybe) add a term of order k2

48 by some additional
construction of Itenberg.
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Construction in degree 14
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