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Positive and negative locus of a real
polynomial

Let C = V(f) C P2 be a smooth real algebraic curve of P2 defined
by a homogeneous polynomial f € R[xg, X1, X2] of even degree.
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Reformulation in terms of ovals

Let C be a real algebraic curve in P2, with non-empty real part.
Let Cy, ..., C; be the connected components of C(R).

All these connected components are homeomorphic to S'.

We say that a component C; is an oval if it divides P?(R) into two
connected components, and a pseudo-line otherwise.

If C is of even degree, all components C; of C(R) are ovals.

We say that an oval is even if it is contained in the interior of an
even number of ovals, and odd otherwise.

Questions

= How many even and odd ovals does C have ?
= What is the repartion of these ovals ?
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Relation to 16th Hilbert problem

In 1900, Hilbert asked the following question:

Generalisation of 16th Hilbert problem (part 1)

What are the possible relative positions of the components of a
real algebraic plane curve?

If we know the complete classification for a certain degree, the
other questions follow.

The answer was already known up to degree 5, so the question was
initially asked for degree 6 curves
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Solution up to degree 5

m In degree 1, the only possibility is J (with J representing a
pseudo-line;

m In degree 2, the two possibilities are (), 1 (where the second
case means 1 oval);

m In degree 3, we have either Jor J U 1;

m In degree 4, the possibilities are (), 1,2, 1(1), 3,4 (where 1(1)
denotes an oval containing an other oval);

m In degree 5, the possibilities are
JJut,Ju2z,Jui{1),Jug,Ju4,Jub Jus.
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Harnack’s sextic Gudkov’s sextic Hilbert’s sextic
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Harnack’s sextic Gudkov’s sextic Hilbert’s sextic
Qu1(1) 5U1(1) 1U1(9)
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m Harnack’s bound: For C be a real algebraic curve,
bo(RC) < g(CC) + 1.
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Topological restrictions and Ragsdale
conjecture

m Harnack’s bound: For C be a real algebraic curve,
bo(RC) < g(CC) + 1.
m Petrovsky’s inequalities: For C a real algebraic curve in P2
of even degree 2k and p, n the number of even, odd ovals of
C, we have

n<3k2—3k+1 . <3k2—3k
p — 2 7 p —_ 2
m Ragsdale/Petrovsky’s conjecture: with the same hypotheses

as above,
3k® — 3k 3k? — 3k

<= Y7 <= = )
p < 5 +1, n< 5 (+1)
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Return to degree 6 examples

The genus of a degree 2k = 6 plane curve is 10, hence a maximal
curve (in Harnack’s sense) of degree 6 has 11 ovals.
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Return to degree 6 examples

The genus of a degree 2k = 6 plane curve is 10, hence a maximal
curve (in Harnack’s sense) of degree 6 has 11 ovals.

(Not interesting o 3K2-3k _
here) 2

p=35% 1 1=10
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degree 2 and 4.
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Isotopy classification up to degree 7

From the classification given before, Ragsdale conjecture is true in
degree 2 and 4.

In 1969, Gudkov completed the classification for degree 6 curves
(64 isotopy types), from which we obtain that Ragsdale conjecture
is true in degree 6.

Viro completed the classification for degree 7 curves (1980), using
new constructions techniques (121 isotopy types).

Starting from degree 8, no complete classification is known (at least
in algebraic case).
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First "small” counter-examples in
degree 8

Theorem (Viro, 1980)

For every k > 4 even, there exist maximal curves of degree 2k > 8
satisfying n = 3-8k | 1.
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First "small” counter-examples in
degree 8

Theorem (Viro, 1980)

For every k > 4 even, there exist maximal curves of degree 2k > 8
satisfying n = 3-8k | 1.

We get here that Ragsdale conjecture is false, but Petrovsky’s
conjecture is still satisfied.
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Smoothing complicated singularities
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Itenberg’s counter-examples

Theorem (ltenberg, 1993)

For every k > 5, there exists a non-singular real algebraic curve
of degree 2k satisfying

_3k2—3k+1+ (k—3)%+ 4
2 8 '
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Theorem (ltenberg, 1993)

For every k > 5, there exists a non-singular real algebraic curve
of degree 2k satisfying

_3k2—3k+1+ (k—3)%+ 4
2 8 '

For every k > 5, there exists a non-singular real algebraic curve
of degree 2k satisfying

2 _1)2
:3I(2—3I(_|_1_|_\‘WJ_1,
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Iltenberg’s construction in degree 10
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Open questions

Combining Harnack and Petrovsky’s inequalities, we obtain the

bounds ) )
<7k —9k+6} <7k —9k+4'

p= 4 n= 4
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Open questions

Combining Harnack and Petrovsky’s inequalities, we obtain the

bounds ) )
<7k -9k +6 <7k —9k+4'

PETg 0 "=y

Questions

m Is the Harnack-Petrovsky bound sharp ?
= Do we have counter-examples for maximal curves ?
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Partial answers

Theorem (Brugallé, 2006)
The Harnack-Petrovsky bound is asymptotically sharp.
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Partial answers

Theorem (Brugallé, 2006)
The Harnack-Petrovsky bound is asymptotically sharp.

Theorem (Haas, 1997)

Any maximal curve obtained by combinatorial patchworking satis-
fies
3k2 — 3k 3k? — 3k

pSTJﬂ, n§T+4.

. . 2_ .
No example of maximal curve with n > 323 1 1 is known.
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Best examples in low degree

Theorem (Haas, 1995)

For every k > 5, there exists a non-singular real algebraic curve
of degree 2k satisfying

3K -3k |K-T7k+16
- == —
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Theorem (Haas, 1995)

For every k > 5, there exists a non-singular real algebraic curve
of degree 2k satisfying

_ 3K -3k . |K-Tk+16
- == —

Can add a term of order % by some additional construction of
Itenberg.
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Best examples in low degree

Theorem (LT., 2021)

For every k > 5, there exists a non-singular real algebraic curve
of degree 2k satisfying

3k? — 3k k? — 5k + 5+ (—1)k

(The real formula is horrible)
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Best examples in low degree

Theorem (LT., 2021)

For every k > 5, there exists a non-singular real algebraic curve
of degree 2k satisfying
3k2 — 3k k% — 5k + 5+ (—1)k

~ 2 2R
p 5 T 1+ 5

(The real formula is horrible)

Can (maybe) add a term of order by some additional
construction of Itenberg.
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Construction in degree 14
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