An Introduction to Motivic Homotopy theory Thursday, 18 March 2021 09:58 The origin of Motives (1960)
X E Sm/F, Smooth (seperated) schemes (For simplicity) of finite Lype over F.
Char $F = 0$. Choose an embedding Betti cohomology: $F \stackrel{u}{\longrightarrow} C$ $H_B^*(X) := H_{sing}^*(X(C), \mathbb{Z})$ (P,q) - with Hodge (abelian group) • (Algebraic) de Rham
• (Algebraic) de Knam $H_{dR}^{\dagger}(X) := H_{zor}(X, \Omega_{X/F}) (F - \text{vedor space})$ • l -adic cohomology $(F \longrightarrow F)$ $H_{\ell}^{\dagger}(X) := H_{et}^{\dagger}(X, \Omega_{\ell}) = \lim_{\longrightarrow} H_{et}^{\dagger}(X, \mathbb{Z}/\ell\mathbb{Z}) \otimes \Omega_{\ell}$
$\frac{\text{Comparison maps}}{H_{\mathcal{B}}^{*}(X)\otimes \mathbb{C} + H_{\mathcal{A}R}^{*}(X)\otimes \mathbb{C}}$
Similar phenomena happens in char F = 0 Similarities (Contravariant functors
Talu values in different dim 2x dim H? (X) = dim H Salisty Poincaré duality,
Grothen clieches dream Grothen clieches dream
Motives throug which all was the Hurries should factor.
Smooth Projective X Varieties Weil cohomotoss abelian &-category ME
The idea of motives is to unity all known cokomology theres, and also to give meaning to pricise (point)
· [projective line] = [line] + [poin] · [projective plane] = [plane] + [line] + [point] (P ² = A ² U A' U A° Thum (Grothencliecte)
The category of (pure) - motives exists Iff the standard conjecture of algebraic cycles holds
RMK: When char F=O, the standard conjectures are implied by the Hodge conjecture.
(No serious progress since 1960-1970!) Deligne proposed to first construct the category of derived motives, that is the
derived category of MF. Vocvocleby created a category of DH that should function as the derived
theory of MF. Homotopy theory on Schemes. H turns out that Sm/x is not good
enocuegh. We do not have all small colimits: "The non-existance of contractions"
$* \leftarrow \{0,1\} \longrightarrow A^{1}$
Therefore we need to category with all Small limits and colimits in which our category of schems embeds.
$Sm/F \longrightarrow PreShv(sm/F)$ $X \longmapsto Hom(-, X) = :R_X$
Sm/F -> PreShv (sm/f) X -> Hom (-, X) =: Rx Sm/F This is the Yoneda embedding. This has a disadvantage. X=UUV a Zarishi open covering
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
X is the categorical union of v and V. Runv —> Rv
Ra -> Rx
But this is not a pushouit diagram, that is Upreshov -> X is not an isomorphism.
So therefore we introduce the Visnevich topology. Zanishi C Nisnevich C étale.
Eanslu C Ni Shevica
Shv _{Nis} (Sm/F) C PreShv (Sm/F) . Our next task is to find a suitable replacement for I.
Voevocloby chooses 14. Det A prohest is (A2)-homotopy invariant if
$f(x \times A') \longrightarrow f(x)$ is an isomorphism. O:llan 1977'
Voevocloby inverts these (Model categories) morphism, and with technicalities, he some Constructs DM as a derived category.
DMRis D (2A/ZNis PreShr (Sm/p))
DM Nis has many good properties, but sally this is not the derived category of MF. The (Voevocloby): (Proposition, 4.3.8, "Triangulated category of multiple are a field"
The (Voevocloby): ([Proposition, 4.3.8, "Triangulated category of motives over a field" Dugm has no reasonable t-structure. Precise statement: k field st. there exists a conic X over k with no k-rational point, then Dugm
has no reasonable t -structure. $ \left(\begin{array}{c} D_{30} \end{array}\right) $ $ \left(\begin{array}{c} D_{30} \end{array}\right) $ $ \left(\begin{array}{c} D_{30} \end{array}\right) $
Choosing A^{1} as the replecement for I, restrict our theory to A^{1} -invariant phenomena. There are at lot of cohomology theries that are not A^{1} -invariant.
· P-adic cohomology Hot (X, Tp), 1/p + Ox · Hodge cohomology
H ⁿ (X, S2 ^j). Hovever, they are <u>P-invoriant</u> .
Problem: P' is not contractible. We construct a gadget $\overline{\Pi}:=(P', \infty)$.
This closs not live in algebraic geometry, but in log geometry.