
Edvard Aksnes

Tropical homology manifolds

Thesis submitted for the degree of Philosophiae Doctor

Department of Mathematics
Faculty of Mathematics and Natural Sciences

University of Oslo

2024



© Edvard Aksnes, 2024

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1234

ISSN 1234-5678

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: UiO.
Print production: Graphic center, University of Oslo.



Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the University of Oslo, under the supervision of professor
Kris Shaw. This work was supported by the Trond Mohn Foundation project
“Algebraic and Topological Cycles in Complex and Tropical Geometries”.

The thesis is a collection of three papers, presented in chronological order of
writing. The common theme to them is a study of certain topics within tropical
cohomology theory. The papers are preceded by an introductory chapter that
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for the work. The second paper is joint with Omid Amini, Matthieu Piquerez,
and Kris Shaw. I am the sole author of the first and third papers.
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Abstract

English

In this thesis, we study tropical homology manifolds, a type of space with
multiple distinguished properties within tropical geometry, and in particular
tropical cohomology theory. We quickly review these notions, as a background
to the contents of the thesis.

Tropical geometry is a relatively new field of mathematics, tightly bonding
to algebraic geometry, combinatorics and multiple other fields. While some of
the ideas in tropical geometry find roots back to the seventies, the main impetus
to the field came after the turn of the millennium, with the work of Mikhalkin
relating tropical curve counting and Gromov–Witten invariants.

In tropical geometry, the varieties of classical geometry, such as smooth curves
and surfaces, are replaced with piecewise linear objects called tropical varieties. In
particular, the latter are locally given as polyhedral fans, consisting of cones glued
together along common boundaries. The operation of tropicalization transforms
a classical object into a tropical one, through which some of the invariants are
preserved, such as dimension and degree. For instance, the tropicalization of a
complement of a hyperplane arrangement yields the Bergman fan of the matroid
of the arrangement. More generally, any matroid has a corresponding Bergman
fan, and such fans are the building blocks of tropical manifolds.

Tropical cohomology is an invariant of a tropical variety, introduced in a joint
article by Itenberg, Katzarkov, Mikhalkin and Zharkov. They show that, for a
family of smooth varieties, tropical cohomology recovers information about the
mixed Hodge structures, and hence cohomology, of the varieties, provided that its
tropicalization is a tropical manifold. This is dependent on the simpler property
that, for complements of hyperplane arrangements, the tropical cohomology of
the corresponding Bergman fan is isomorphic to the Orlik–Solomon algebra,
which in turn is isomorphic to the cohomology. Another property of the tropical
cohomology of Bergman fans is that they satisfy tropical Poincaré duality, an
isomorphism property between tropical homology and cohomology, as shown by
Jell, Rau, Shaw and Smacka.

Finally, we note that the complexifications of complements of real hyperplane
arrangements satisfy a certain equality between the sum of their mod two Betti
numbers, making these maximal varieties. Rau, Renaudineau and Shaw have
introduced real phase structures on the Bergman fans of matroids, which through
the use of a spectral sequence leads to the bounds for the aforementioned Betti
numbers for real algebraic varieties with tropical manifolds as tropicalization.

This thesis approaches properties of tropical cohomology satisfied by fans
of matroids, with the perspective of finding more general spaces satisfying the
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Abstract

above-mentioned properties. The thesis consists of three articles.
In the first article of this thesis, we study tropical Poincaré duality. For any

rational balanced polyhedral fan, there is a tropical fundamental class, which
induces cap products between tropical cohomology and tropical Borel–Moore
homology. When all these cap products are isomorphisms, the fan is said to be
a tropical Poincaré duality space. If for each face, the corresponding star fan are
also tropical Poincaré duality spaces, the fan is called a local tropical Poincaré
duality space or a tropical homology manifold.

The article gives necessary conditions for fans to satisfy tropical Poincaré
duality, as well as a classification in dimension one. Moreover, under a vanishing
condition for Borel–Moore homology, we show that when all the stars of proper
faces of a fan satisfy tropical Poincaré duality, so does the fan itself. Using this,
we give necessary and sufficient conditions for a fan to be a tropical homology
manifold, and thereafter construct abstract balanced polyhedral spaces satisfying
tropical Poincaré duality using these fans.

In the second article of this thesis, joint with Amini, Piquerez and Shaw, we
investigate under which conditions the tropical cohomology of the tropicalization
of a variety computes its cohomology. Given the tropicalization of a complex
subvariety of the torus, we define a morphism between the tropical cohomology
and the cohomology of their respective tropical compactifications. Such a variety
is cohomologically tropical if this map is an isomorphism for all closed strata of
the tropical compactification.

We define wunderschön varieties as ones where, for a tropical compactification
of the variety, the open strata are all connected, with pure mixed Hodge structures
concentrated in the maximum possible weight. We show that a schön subvariety
of the torus is cohomologically tropical if and only if it is wunderschön and
its tropicalization is a tropical homology manifold. Moreover, we study other
properties of cohomologically tropical and wunderschön varieties, showing that in
a semistable degeneration to an arrangement of cohomologically tropical varieties,
the Hodge numbers of the smooth fibers are computed by the tropical cohomology
of the tropicalization, by extending the results of Itenberg, Katzarkov, Mikhalkin,
and Zharkov.

In the third article of this thesis, we study arrangements of curves from a
tropical perspective. We first define arroids as an abstract axiom set encoding
the intersection properties of arrangements of curves, generalizing the definition
of matroids of rank three which can come from line arrangements. Under the
assumption that the curves in an arrangement intersect pairwise transversely,
i.e. forbidding higher order intersections, we show that the tropicalization
of the complement is determined by the associated arroid, by constructing
abstractly arroid fans. Moreover, drawing upon the first and second papers of
the thesis, we study which arroid fans are tropical homology manifolds, and
give some conditions for when the complement of an arrangement of curves is
cohomologically tropical. Finally, we give criteria for when the complement is a
maximal variety in terms of tropical geometry, and using this, we construct a
family of examples illustrating recent work of Ambrosi and Manzaroli.

It is a central recurring theme throughout the thesis that tropical homology
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manifolds have rich geometry and combinatorics, mirroring some of the properties
of Bergman fans of matroids. They therefore lend their name to the thesis title.

Norsk

I denne avhandlingen studerer vi tropiske homologimangfoldigheter, som er
en type rom med flere særeskilte egenskaper innen tropisk geometri, og det er
spesielt tropisk kohomologiteori som vektlegges. Som bakgrunn for avhandlingens
innhold, begynner vi med en oppsummering av ovennevnte begrep.

Tropisk geometri er et relativt nytt fagfelt innen matematikk med sterk
knytning til algebraisk geometri, kombinatorikk, og flere andre fagfelt. Noen
av ideene i tropisk geometri har opphav i arbeider fra syttitallet, men
hoveddrivkraften i fagfeltet kom rundt tusenårsskiftet med Mikhalkins arbeid
som knyttet tropisk kurvenummerering til Gromov–Witten invarianter.

I tropisk geometri erstattes varietetene fra klassisk geometri, slik som glatte
kurver og flater, med stykkevise lineære objekter kalt tropiske varieteter. Disse
sistnevnte er lokalt gitt ved polyhedralske vifter som består av kjegler limt langs
delte render. Tropikalisering går ut på transformere et klassisk objekt om til et
tropisk. Gjennom denne prosessen bevares noen av det opprinnelige objektets
invarianter, slik som dimensjon og grad. For eksempel, tropikaliseringen av
komplementet til et hyperplanarrangement gir Bergman-viften til arrangementets
matroide. Mer generelt gir enhver matroide opphav til en tilhørende Bergman-
vifte, og slike vifter er byggestenene til tropiske mangfoldigheter.

Tropisk kohomologi er en av invariantene til en tropisk varietet, som ble innført
i en felles artikkel av Itenberg, Katzarkov, Mikhalkin og Zharkov. Sammen viser
de at for en familie av glatte varieteter, gir tropisk kohomologi informasjon
om varietetenes blandede Hodge-struktur, og dermed deres kohomologi dersom
tropikaliseringen er en tropisk mangfoldighet. Dette avhenger av egenskapen om
at, for et komplement av et hyperplanarrangement, er den tropiske kohomologien
til den tilhørende Bergman-viften isomorf til Orlik–Solomon algebraen, som
igjen er isomorf til kohomologien. En annen egenskap til Bergman-vifter er at
de tilfredsstiller tropisk Poincaré-dualitet, en form for isomorfi mellom tropisk
homologi og kohomologi, som bevist av Jell, Rau, Shaw og Smacka.

Merk også at kompleksifiseringen av komplementer av reelle hyperplanar-
rangement tilfredsstiller en viss ulikhet mellom summen av deres modulo-to
Bettitall, som gjør disse til maksimale varieteter. Rau, Renaudineau og Shaw har
definert reelle fasestrukturer for Bergman-vifter til matroider, som ved bruk av
spektralsekvenser gir grenser for de ovennevnte Bettitallene for reele algebraiske
varieteter med tropiske mangfoldigheter som tropikalisering.

Denne avhandlingen studerer de tropisk kohomologiske egenskapene som
er tilfredsstilt av matroiders Bergman-vifter, med et det siktemål å finne rom
som tilfredsstiller noen av egenskapene nevnt over. Avhandlingen består av tre
artikler.

I avhandlingens første artikkel studerer vi tropisk Poincaré-dualitet. For
enhver balansert rasjonal polyhedralsk vifte finnes det en tropisk fundamentalk-
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Abstract

lasse, som induserer cap produkter mellom tropisk kohomologi og tropisk Borel–
Moore homologi. Når alle cap produkter er isomorfier, kaller vi viften et tropisk
Poincaré-dualitetrom. Hvis stjerneviften til enhver side av en vifte også er tropiske
Poincaré-dualitetrom, kalles viften for et lokalt tropisk Poincaré-dualitetrom eller
en tropisk homologimangfoldighet.

Artikkelen gir nødvendige betingelser for at vifter skal være tropiske Poincaré-
dualitetsrom, og en klassifisering i dimensjon en. Under betingelse om at
Borel–Moore homologi forsvinner utenfor øverst grad, viser vi at dersom all
stjerneviftene til alle sider av en vifte tilfredsstiller tropisk Poincaré-dualitet,
så gjør selve originalviften det også. Ved hjelp av dette gir vi tilstrekkelige og
nødvendige betingelser for at en vifte skal være en tropisk homologimangfoldighet.
Deretter bygger vi abstrakte balanserte polyhedralske rom som tilfredsstiller
tropisk Poincaré-duality takket være disse viftene.

I avhandlingens andre artikkel, i samarbeid med Amini, Piquerez og Shaw,
undersøker når tropisk kohomologi til en varietets tropikalisering beregner
dens kohomologi. Gitt tropikaliseringen av en torus kompleks undervarietet,
definerer vi en morfi mellom den tropiske kohomologien og kohomologien til
tilhørende tropiske kompaktifiseringer. Vi kaller en varietet for kohomologisk
tropisk dersom denne avbildningen er en isomorfi for alle lukkede strata av den
tropiske kompaktifiseringen.

Vi definerer en wunderschön varietet til å være en hvor, for en tropisk
kompaktifisering av varieteten, alle de åpne strataene er sammenhengende
med rene blandede Hodge-strukturer konsentrert i den maksimale mulige
vekten. Vi viser at en schön undervarietet av torusen er kohomologisk tropisk
hvis og bare hvis den er wunderschön og dens tropikalisering er en tropisk
homologimangfoldighet. Vi studerer også andre egenskaper ved kohomologisk
tropiske og wunderschöne varieteter, slik som å vise at i en semistabil degenerering
til en samling kohomologisk tropiske varieteter, kan Hodge tallene til de glatte
fibrene beregnes ved den tropiske kohomologien til tropikalisering ved å utvide
resultatene til Itenberg, Katzarkov, Mikhalkin og Zharkov.

I avhandlingens tredje artikkel studerer vi komplement av kurvearrangementer
fra et tropisk perspektiv. Først definerer vi arroider, som et abstrakt sett av
aksiomer som koder inn snittingsegenskapene til kurvearrangementer, ved å
generalisere definisjonen av rang-tre matroider som kommer fra linjearrangement.
Under antakelsen om at kurvene snitter parvis transversalt, dvs. ved å forby
høyere ordens snitt, viser vi at tropikaliseringen av komplementet bestemmes
av den tilhørende arroiden ved å bygge abstrakte arroidevifter. Med blikk på
avhandlingens første og andre artikler, studerer vi hvilke arroidevifter som er
tropiske homologimangfoldigheter, og gir betingelser for når komplementet til
et kurvearrangement er kohomologisk tropisk. Til slutt gir vi kriterier for når
et slikt komplement er en maksimal varietet ved hjelp av tropisk geometri, og
basert på dette, bygger vi en familie av eksempler som illustrer nylig arbeid av
Ambrosi og Manzaroli.

Et gjentakende tema i avhandlingen er at tropiske homologimangfoldigheter
har rik geometri og kombinatorikk som gjenspeiler noen av egenskapene til
matroiders Bergman-vifter. Avhandlingen er derfor oppkalt etter dem.
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Chapter 1

Introduction

In this thesis, we investigate how certain properties of matroids, viewed through
the lens of tropical geometry, may be generalized.

The notion of matroids was introduced independently by Whitney and
Nakasawa [Whi35; Nak09a; Nak09b; Nak09c], and provides an abstraction for
the concept of independence in mathematical objects, particularly in linear
algebra and graph theory [Oxl11]. A surprising aspect of matroid theory is the
wealth of different definitions yielding the same underlying object: a matroid. The
equivalence of these sometimes dramatically different definitions is affectionately
called the cryptomorphic definitions of a matroid. For our purposes only the
axiomatization in terms of flats will be necessary.

Tropical geometry lies at the crossroads of combinatorics and algebraic
geometry. Mikhalkin’s paper [Mik05], enumerating both real and complex
curves in toric surfaces, initiated a lot of interest for tropical geometry and
tropicalization of varieties. There are at least two approaches to the tropicalization
of varieties, the primary two being through using non-archimedean valuations
[MS15], or through Maslov dequantization [IMS09]. In tropical geometry, the
operations of addition and multiplication of real numbers are replaced by
maximum and addition respectively, yielding the tropical or max-plus semi-
ring. This replacement also leads to a new type of geometry, where polynomial
“equations” give rise to piecewise linear objects. A recurring theme, as illustrated
by Mikhalkin’s paper, is that some classical problems can be transformed into
tropical counterparts sometimes yielding equivalent yet simpler formulations.

The interest for matroids in tropical geometry can be traced back to Sturmfels’
work on the tropicalization of linear spaces [Stu02, Chapter 9]. Sturmfels shows
that the tropical variety of an ideal generated by homogeneous linear forms is
given entirely by the matroid of the ideal, giving a combinatorial description
of the tropicalization, the Bergman fan of the matroid. These are named after
Bergman’s pioneering work, forming a root of tropical geometry [Ber71]. For
realizable matroids, [Stu02, Theorem 9.6] notes that the Bergman fan is in
fact a polyhedral fan thanks to an explicit description of the logarithmic limit
set given in [BG84]. For arbitrary matroids, Sturmfels describes a set called
the Bergman complex [Stu02, Theorem 9.12]. Taking the central cone over a
Bergman complex, one recovers the corresponding Bergman fan. Explicit fan
structures on the Bergman fan in terms of flags of flats of the underlying matroid
were first described by Ardila and Klivans in [AK06], where topological and
combinatorial properties of these fans are studied in detail. In [Spe08], Speyer
describes the more general tropicalization of linear spaces over non-archimedean
fields, yielding polyhedral complexes rather than fans, and corresponding to
the more general concept of valuated matroids. However, the vertices of these
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1. Introduction

complexes correspond to Bergman fans of matroids. More recently, Fink has
shown that these tropical linear spaces are exactly the tropical varieties of degree
one [Fin13].

Bergman fans of matroids have also garnered interest from the perspective of
defining abstract tropical spaces. Based on a suggestion of Mikhalkin, a tropical
manifold is a space locally given by tropical linear spaces, as studied in [MZ14;
BIMS15; JRS18; IKMZ19; JSS19], mirroring the construction of manifolds as
spaces locally given by euclidean space. The motivation behind this definition lies
in the multiple nice properties Bergman fans satisfy. Of particular interest in this
thesis are the strong properties on their tropical homology and cohomology groups,
introduced by [IKMZ19], which can be associated to any fan (see Section 1.1.3
for a detailed introduction).

It was shown in [JRS18; JSS19; GS23] that Bergman fans have a certain
kind of isomorphism between their tropical homology and cohomology groups,
called tropical Poincaré duality. This property has been incorporated into a
full Hodge theory-equivalent for tropical manifolds by [AP20]. Moreover, if a
matroid arises from a complex hyperplane arrangement, tropical cohomology
of the corresponding Bergman fan computes the Orlik–Solomon algebra of the
matroid [Sha11; Zha13], which is isomorphic to the singular cohomology of the
complement of the arrangement. Moreover, this relation between tropical and
singular cohomology yields results in real algebraic geometry [RS23], thanks to
the maximality of complements of hyperplane arrangements.

This thesis consists of three papers. The first paper studies which tropical
varieties satisfy tropical Poincaré duality in the same manner as Bergman
fans. Similarly, the second paper studies which complex varieties have their
cohomology computed by tropical cohomology of their tropicalization, mirroring
the phenomenon for complements of complex hyperplane arrangements. The
third paper introduces an axiomatization of arrangements of curves, gives families
of examples of fans satisfying the properties of the two first papers, and finishes
by deducing a result in real algebraic geometry.

One of the recurring themes is that tropical varieties satisfying a strengthened
version of tropical Poincaré duality, namely the tropical homology manifolds, are
particularly amenable to proving results, containing some part of the flexibility
of matroids, and are key to a deeper understanding of tropical cohomology. They
therefore lend their name to the thesis title.

1.1 Preliminaries

Before turning to a detailed description of the papers in this thesis, we describe
some of the main objects and concepts making repeated appearances.

1.1.1 Fans and polyhedral complexes

Throughout this thesis, we work with fans and polyhedral complexes. We begin
by describing fans. While these have their own interesting combinatorics, see e.g.
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Preliminaries

[Zie95], our interest in fans stems from their role in tropical and toric geometry.
The tropicalization of a variety over a trivially valued field is supported on a
rational polyhedral fan [MS15, Corollary 3.5.5], and fans guide the construction of
toric varieties [Ful93]. More generally, tropicalizing a variety over a non-trivially
valuated field generally yields a set whose support is a polyhedral complex [MS15,
Theorem 3.3.5]. These are locally supported on fans. Moreover, polyhedral
complexes are the building blocks of abstract tropical spaces [Mik06].

Let N be a rank n free abelian group, the lattice, and let M := HomZ(N,Z)
be the dual lattice. For any (commutative and unital) ring R, let NR := N ⊗Z R
and MR be the corresponding free R-modules. A cone σ in NR is the set
cone(v1, . . . , vk) := {a1v1 + · · · + akvk | ai ≥ 0} of positive linear combinations of
vectors vi from the lattice N , such that σ does not contain a full linear subspace
of NR. A cone τ is said to be a face of σ if there is an element m ∈ NR such that
m(x) ≥ 0 for all x ∈ σ and τ := {x ∈ σ | m(x) = 0}. A fan is a finite collection
of cones, such that any two cones meet along a common face. In particular, all
cones meet in the central minimal vertex.

A rational half-space H is a set of the form {x ∈ NR | α · x ≥ β}, with
α ∈ M and β ∈ N . A polyhedron σ is the intersection of finitely many rational
half-spaces, and a face of a polyhedron σ is another polyhedron given as σ ∩ H
for some half-space H containing σ. Finally, a polyhedral complex is a finite
collection of polyhedra such that the intersection of any pair of polyhedra is
either empty or a face of both. The dimension of a polyhedral complex ∆ is the
maximum of the dimensions of its polyhedra, and we denote by ∆k the set of
k-dimensional polyhedra of ∆. More generally, an abstract rational polyhedral
space is a paracompact second countable Hausdorff topological space admitting
charts so that it is locally a rational polyhedral complex, with extended affine
Z-linear transition maps.

1.1.2 Matroids

A common thread in this thesis is to consider the tropical geometry of fans of
matroids and see in which wider context they apply. In our setting, the most
convenient definition is in terms of flats.

Definition 1.1.1. A matroid M on a finite set E consists of a set F of subsets of
E such that

• ∅, E ∈ F ,

• For any two F1, F2 ∈ F , the intersection F1 ∩ F2 is contained in F ,

• For F ∈ F , the minimal-by-inclusion elements F1, . . . , Fk ∈ F containing
F are such that the sets F1 ∖ F, . . . , Fk ∖ F form a partition of E ∖ F .

The set E is called the ground set, typically labelled so that E = {1, . . . , n},
and the elements of F are called flats. There are many sources of examples for
matroids, ranging from graphs to linear algebra [Oxl11]. One particular class of
examples, which will make multiple appearances later, is that of the matroids
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1. Introduction

coming from arrangements of hyperplanes. One considers a base set E consisting
of hyperplanes in some projective space, and the lattice of intersections of these
hyperplanes forms the collection of flats of a matroid, see e.g. [OT92] for details.

The combinatorial properties of matroids have been a subject of study since
their inception, however a recent surge of activity can be attributed to ideas of
Huh, linking matroid theory to Hodge theory. In [Huh12], Huh proves that the
coefficients of the chromatic polynomial of a graph form a log-concave, hence
unimodal, sequence, answering a conjecture of Read. In [HK12], this was taken
further, proving log-concavity of the characteristic polynomial coefficients for
any representable matroid, making progress on a conjecture of Rota–Heron–
Welsh. This generalization is based on intersection theory for the toric variety
associated to the Bergman fan of the matroid. Finally, in [AHK18], the full
Rota-Heron-Welsh conjecture is established: for any matroid, the coefficients of
the characteristic polynomial form a log-concave sequence. This was achieved
by defining the Chow ring of an arbitrary matroid, and proving that this ring
satisfies a version of Poincaré duality, the Hodge-Riemann bilinear relations, and
the hard Lefschetz theorem. It is suggested in [Huh18] that such “Chow rings”,
satisfying the above three properties should be the underlying reason for the
log-concavity of many sequences which arise in mathematics.

In this thesis, the main objects based on matroids which we use are certain
rational polyhedral fans, the Bergman fans, constructed as follows. Using the
ground set, one may form a lattice N := Z|E| with basis e1, . . . , en indexed by
the elements of E. Each subset S of the ground set E gives a vector eS in the
vector space NR ∼= Rn, taking the form

eS :=
∑
i∈S

ei.

Moreover, a flag of flats is a collection F• of flats of the form F• = {∅ = F0 ⊊
F1 ⊊ · · · ⊊ Fl = E} for some l. To a flag F•, one associates the cone

σF• = cone(eF1 , . . . , eFl
).

Considering all flags of flats, this collection of cones forms a fan.

Definition 1.1.2 ([AK06]). For M a matroid, the set of cones σF• , for each flag
of flats F• of M , forms a fan, called the Bergman fan of the matroid.

More generally, one may consider abstract rational polyhedral spaces which
are locally isomorphic to Bergman fans of matroids. Such spaces are called
tropical manifolds.

1.1.3 Tropical (co)homology

We begin by describing the origins of tropical cohomology, before turning to the
main definitions.

In [IKMZ19], Itenberg, Katzarkov, Mikhalkin and Zharkov introduce tropical
(co)homology. Their main theorem relates tropical cohomology and singular
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cohomology in the following setting. Let π : X → D∗ be a family of subvarieties
of CPn parametrized over the disk D∗. The authors adapt the construction of a
semi-stable model from [KKMS73], giving a completed family π : X → D such
that the fiber X0 := π−1(0) is a reduced simple normal crossing divisor.

Each of the fibers Xt = π−1(t) of this family is a projective Kähler manifold,
with cohomology groups admitting Hodge structures, and there is a precise
sense in which these Hodge structures vary smoothly as a function of t, see e.g.
[Voi02, Chapter 10]. However, the central fiber X0 has a mixed Hodge Structure,
which does not directly correspond to a variation in the family. Schmid [Sch73]
and Steenbrink [Ste76; Ste77], using different methods, show the existence of a
limit mixed Hodge structure, compatible with both the Hodge structures of the
smooth fibers and the mixed Hodge structure of the central fiber. In Steenbrink’s
approach, there is a space X∞, the canonical fiber, with a mixed Hodge structure
on its cohomology, the limit mixed Hodge structure. The weight filtration on
H•(X∞) induces a spectral sequence, degenerating on the second page, where
the E1-page is given in terms of the cohomology of the components of the central
fiber X0.

In [IKMZ19], the authors show that when the tropicalization of the family is
a tropical manifold, the E1-page of this spectral sequence is entirely computable
in terms of the tropical cochain complexes of their tropicalization. The limit
mixed Hodge structure spectral sequence degenerates at the E2-page, giving the
following connection between tropical cohomology and the limit mixed Hodge
structure.

Theorem 1.1.3 ([IKMZ19, Theorem 1]). Let π : X → D be as above. Assume
the tropicalization X of X is a tropical manifold. Then the tropical cohomology
groups Hp,q(X) are isomorphic to the associated graded groups GrW

2p Hp+q(X∞)
of the weight filtration on limit mixed Hodge structure of the canonical fiber X∞.

It also follows from the assumptions of the theorem that the Hodge numbers
hp,q(Xt) of the generic fibers of the family are equal to the dimensions of the
tropical cohomology groups Hp,q(X) [IKMZ19, Corollary 1].

One of the key ingredients of the proof of Theorem 1.1.3 is a result of
[Zha13] which compares the cohomology of the complement of an arrangement
of hyperplanes, and the tropical cohomology of the tropicalization of this
complement. In the study of hyperplane arrangements, it is a theorem of Orlik
and Solomon [OS80] that the cohomology of the complement of a hyperplane
arrangement is determined entirely by the matroid of the arrangement, giving
rise to the Orlik–Solomon algebra. Zharkov shows that tropical cohomology
of the fan of a matroid computes the Orlik–Solomon algebra. Another more
combinatorial proof, based on iterating tropical modifications, was given by
Shaw [Sha11].

We now turn to defining tropical (co)homology, which has been studied
extensively in recent years, also beyond the origins described above [Zha13;
MZ14; JRS18; IKMZ19; JSS19; AP20; AP21; ARS21; Mik21; Yam21; Aks23;
GS23; Mik23; RS23]. In the following, we will describe the cellular approach to
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the restricted case of a polyhedral complex, as described in Section 1.1.1, which
is most convenient for concrete computations.

Let ∆ be a polyhedral complex in NR, for some lattice N . For each polyhedron
σ of ∆, let L(σ) be the saturated sublattice parallel to σ. For each p ≥ 1, the
p-th multi-tangent space Fp(σ) is the group defined by

Fp(σ) :=
∑
σ≼γ

p∧
L(γ) ⊆

p∧
N,

where the subspace sum is taken over all polyhedra γ of ∆ containing σ, which
we denote using the notation σ ≼ γ. For τ a face of σ, subspace inclusion induces
a map ισ≽τ : Fp(σ) ↪→ Fp(τ). Dualizing these groups and maps, one obtains the
p-th multi-cotangent spaces Fp(σ), with maps ρτ≼σ : Fp(τ) → Fp(σ). Moreover,
for any commutative ring R, one may tensor to get R-modules FR

p (σ), Fp
R(σ)

and R-module maps.
Assign an orientation to each cone σ, and for each face τ of σ, let sign(τ, σ)

be 1 if the chosen orientations of τ and σ are compatible, and −1 otherwise. Now
for a give commutative ring R and each p ≥ 1, the p-th tropical Borel–Moore
complex CBM

p,• (∆; R) is the complex

0 ⊕α∈∆d
FR

p (α) ⊕β∈∆d−1FR
p (β) · · ·

⊕
v∈∆0

FR
p (v) 0.

∂d ∂d−1 ∂1

The differential ∂k is defined as the sum of its components (∂k)γ,δ : FR
p (γ) →

FR
p (δ), which is given by sign(δ, γ) · ιδ≺γ if δ is a face of γ, and 0 otherwise.

The p-th compact support cochain complex Cp,•
c (∆; R) is defined by dualizing all

maps and groups of the above complex.
The p-th tropical chain complex Cp,•(∆; R) is defined similarly to the Borel–

Moore, with the restriction that only compact polyhedra are considered, i.e.
Cp,q(∆; R) := ⊕σ∈∆c

q
FR

p (σ), where ∆c
q is the set of compact q-dimensional

polyhedra of ∆. The differentials are defined as for CBM
p,• (∆; R), and the

corresponding dual construction Cp,•(∆; R) is the p-th tropical cochain complex.
The tropical Borel–Moore homology group HBM

p,q (∆; R) is the q-th homology
group of the complex CBM

p,• (∆; R), while the tropical compact support cohomology
group Hp,q

c (∆; R) is the q-th cohomology group of the complex Cp,•
c (∆; R).

The tropical homology group Hp,q(∆; R) is the q-th homology group of the
complex Cp,•(∆; R), and the tropical cohomology group Hp,q(∆; R) is the q-th
cohomology group of the complex Cp,•(∆; R). In particular, it follows that for
a fan Σ and any q > 0, all higher tropical homology and cohomology modules,
Hp,q(Σ; R) and Hp,q(Σ; R) respectively, are trivial. We denote by Hk(Σ; R) the
direct sums of the form ⊕p+q=kHp,q(Σ; R) over all pairs p, q, and likewise for
the other (co)homology modules.

The above homology and cohomology groups are defined for arbitrary
polyhedral complexes, however they carry additional significance for complexes
which are tropical. A polyhedral complex is weighted if it is equipped with
an integer weight for each of its top-dimensional faces. Moreover, a weighted
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polyhedral complex is tropical if it is balanced in the sense of [BIMS15, Definition
5.7] and [MS15, Definition 3.3.1]. Fans satisfying this condition are more
commonly known as Minkowski weights [FS97].

We note also that there are similarities between tropical (co)homology as
introduced here, to work in the context of the Gross-Siebert program [Gro11].
Such parallels and potential equivalences have been explored by Ruddat [Rud21]
and Yamamoto [Yam21].

1.1.4 Tropical Poincaré duality

From the perspective of tropical homology, for each set of weights w making
a d-dimensional polyhedral complex ∆ balanced, there is a corresponding
fundamental class [∆, w] in the top integral tropical Borel–Moore homology
group HBM

d,d (∆;Z). In fact, this leads to an equivalent formulation of the
balancing condition in terms of the existence of fundamental classes, see [MZ14,
Proposition 4.3] and [JRS18, Remark 4.9]. From this point of view, the condition
that a weighted polyhedral complex is tropical is akin to the orientability of
manifolds. Beyond the case of Z-coefficients, the same reasoning applies to more
general commutative unital rings, as first studied in [JRS18] and expanded upon
in the first paper of this thesis.

As in the case of topological manifolds, the fundamental class [∆, w] can be
used to relate tropical cohomology and tropical Borel–Moore homology. One
may define a cap product

⌢ : Hp,q(∆;Z) → HBM
d−p,d−q(∆;Z),

for each pair 0 ≤ p, q ≤ d := dim ∆. When all these maps are isomorphisms, the
tropical variety is said to satisfy tropical Poincaré duality, and such a tropical
variety is called a tropical Poincaré duality space. This duality was first introduced
for R-coefficient tropical (co)homology in [JSS19], which shows that tropical
manifolds satisfy tropical Poincaré duality with R-coefficients. This is achieved
by showing that Bergman fans of matroids satisfy tropical Poincaré duality,
together with a Mayer–Vietoris-type argument. Moreover, [JRS18] shows that
Bergman fans and tropical manifolds in fact satisfy tropical Poincaré duality
with Z-coefficients, as described above. Note that, for a fan Σ, the triviality of
the higher cohomology groups implies that the only non-trivial morphisms are
of the form ⌢ : Hp,0(∆;Z) → HBM

d−p,d(Σ;Z).
Furthermore, we note that the recent work [AP20] of Amini and Piquerez

establishes a full “Kähler package” for smooth projective tropical cycles, and
relates tropical Poincaré duality of the canonical compactifications of Bergman
fans of matroids to the Poincaré duality of the Chow ring of a matroid from
[AHK18].

1.1.5 Three properties of matroids

With the above preliminaries in mind, we are now in a position to give a brief
overview of the following three properties of matroids. Investigating extensions
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of these three properties is one of the goals of this thesis; this is done in three
different papers:

1. In their work introducing tropical Poincaré duality, Jell, Shaw and Smacka
show that this duality holds for tropical manifolds, and in particular
Bergman fans of matroids [JSS19]. The first paper of this thesis investigates
which more general spaces satisfy tropical Poincaré duality, giving some
conditions for fans and constructions for abstract polyhedral spaces.

2. As was noted above, Zharkov [Zha13] and Shaw [Sha11] show that tropical
cohomology of the fan of a matroid computes the Orlik–Solomon algebra,
which, if the matroid is that of a hyperplane arrangement, in turn computes
the cohomology of the complement of this arrangement [OS80]. The second
paper of this thesis, joint with Amini, Piquerez and Shaw, investigates
under which conditions similar isomorphisms between tropical cohomology
of a tropicalization and singular cohomology of the original variety occur.

3. Complements of hyperplane arrangements are maximal in the sense of the
Smith-Thom inequality relating Betti numbers of the real and complex
parts, by work of Zaslavsky [Zas75]. In addition to studying complements
of curve arrangements from a tropical perspective, the third paper of this
thesis studies maximality conditions for such arrangements.

1.2 Paper one: Tropical Poincaré duality spaces

The central question of the first paper of this thesis, Paper I, is the following:

Which fans have tropical Poincaré duality?

We study this question from the perspective of an arbitrary (commutative and
unital) coefficient ring R for tropical (co)homology, and first show that, when
working with fans, the cap product is necessarily injective, see Proposition I.3.23.
Moreover, for a zero-dimensional fan, i.e. a single point, tropical Poincaré duality
is trivially satisfied.

In the case of one-dimensional fans, i.e. for which there is a single central
vertex and a collection of emanating half rays, we achieve the following complete
classification.

Theorem 1.2.1 (Theorem I.4.8). Let R be a commutative ring, and (Σ, w) an
R-balanced fan of dimension one. Then (Σ, w) satisfies tropical Poincaré duality
over R if and only if it is uniquely R-balanced and all the weights are units in R.

Similarly, in the case of a codimension one tropical fan cycle, we show that
its corresponding Newton polytope must be a simplex in Proposition I.4.11.

Going beyond the case of dimensions zero and one, one may consider fans
satisfying tropical Poincaré duality for each star of one of its cones. For a fan Σ
and cone γ, the star γ⪰ is the fan consisting of the whole linear subspace LZ(γ)
parallel to gamma, with polyhedral cells δ± := δ + LZ(γ) as a subspace sum, for
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each cone δ containing γ. To obtain a fan, one must subdivide these polyhedral
cells so that there is a single central vertex and all cones are strictly convex.
Note that the star of the central vertex of a fan recovers the fan itself.

A fan for which each star is a tropical Poincaré duality space will be called a
tropical homology manifold. This is inspired by the distinction between homology
manifolds and Poincaré duality spaces in topology, where the former property
implies the latter, see e.g. [Ran11]. Any star of the Bergman fan for a matroid M
is itself the Bergman fan of a matroid minor of M , and so the results of [JRS18;
JSS19] imply that tropical manifolds are also tropical homology manifolds. Note
that in the paper, this property is described as Local tropical Poincaré duality,
and it is studied extensively in the case R = Z of integer coefficients in [AP21],
where fans satisfying this property are called tropically smooth.

With the related aims of understanding tropical homology manifolds and
studying the relation between tropical Poincaré duality for stars of a fan and
tropical Poincaré duality for the fan itself, we show the following local-to-global
type theorem.

Theorem 1.2.2 (Theorem I.5.4). Let R be a principal ideal domain, and (Σ, w)
be an R-balanced fan of dimension d ≥ 2, with HBM

q (Σ, FR
p ) = 0 for q ̸= d, for

all p. If (γ⪰, w) satisfies TPD over R, for each γ ∈ Σ with γ⪰ ̸= Σ, then (Σ, w)
satisfies TPD over R.

The above theorem is then applied inductively to all stars of the fan, which
gives the following characterization of tropical homology manifolds.

Theorem 1.2.3 (Theorem I.5.10). Let R be a principal ideal domain, and (Σ, w)
a d-dimensional R-balanced fan. Then Σ is a local TPD space over R if and only
if HBM

q (γ⪰, FR
p ) = 0 for all γ ∈ Σ and q ̸= d, and for all faces β of codimension

1, the star fans β⪰ are TPD spaces over R.

In the final part of the first paper, the above theorems are applied in the
setting of abstract tropical R-cycles (see Definition I.6.1). These can be equipped
with tropical homology and cohomology groups, and a balancing condition for
abstract tropical R-cycles leads to cap products. Tropical manifolds are shown
to satisfy TPD over R and Z in [JRS18; JSS19; GS23]. We say that an abstract
tropical cycle is a tropical homology manifold over R if it is built from fans
which are tropical homology manifolds over R, and using the Mayer–Vietoris
arguments from [JRS18], we show that abstract tropical cycles which are tropical
homology manifolds over R satisfy tropical Poincaré duality in Theorem I.6.5.

The salient difficulty in deeper understanding of tropical Poincaré duality
and tropical homology manifolds lies in the vanishing condition on Borel–Moore
homology, used in both Theorem I.5.4 and Theorem I.5.10, and in particular
in giving geometric conditions on the fan to guarantee such vanishing. This
difficulty is precisely formulated in I.5.13.

The second challenge, formulated in I.5.14, lies in understanding the difference
between tropical Poincaré duality spaces and tropical homology manifolds. There
are as of yet no examples of fans satisfying tropical Poincaré duality which are not
also tropical homology manifolds. An argument based on the spectral sequence
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used in the proof of Proposition I.5.3 shows that such a fan would have to be at
least three-dimensional.

1.3 Paper two: Comparing tropical and singular cohomology

The second paper of this thesis, Paper II, is a joint work with Omid Amini,
Matthieu Piquerez, and Kris Shaw. One point of departure for this paper is the
following question.

When is the cohomology of a variety isomorphic to the tropical cohomology of
its tropicalization?

For example, as discussed in Section 1.1.3, Zharkov [Zha13] and Shaw [Sha11]
have shown that, for the matroid of a hyperplane arrangement, one may use the
tropical cohomology of the Bergman fan of the matroid to compute the matroid’s
Orlik–Solomon algebra. This latter algebra is isomorphic to the cohomology of
the complement of the arrangement [OS80].

We approach the question in the following context. Let X be a complex
subvariety of an algebraic torus T with lattice N , and X := trop(X) its
tropicalization. For the 0-th multi-cotangent sheaf F0, which is merely the
constant sheaf QX , earlier results of Hacking [Hac08] show that the cohomology
of the link at the vertex of the fan, which is equal to the cohomology of F0,
is related to the top associated graded groups of the weight filtration on the
cohomology of X. The latter groups are obtained in terms of a compactification
X of the variety X by a simple normal crossing divisor.

A tropical compactification, as introduced by Tevelev [Tev07], is a construction
of a compactification of a toric variety with desirable properties. Given any
complex subvariety X of an algebraic torus T with lattice N , any fan Σ in N
gives rise to a toric variety CPΣ, which contains the torus T and the variety X.
This allows one to take the closure X of X in CPΣ. Moreover, each cone σ of the
fan Σ gives rise to a torus orbit Tσ, which one may intersect with X to obtain
components Xσ := Tσ, along with their closures Xσ. If the fan Σ is supported on
the tropicalization X, then a result of Tevelev shows that the closure X is compact
[Tev07, Proposition 2.3]. Similarly, the tropical variety X admits a closure X
inside the tropical toric variety TPΣ. There is a similar construction of tropical
toric varieties TPΣ, giving a closure X of the tropicalization X := trop(X), as
well as components Xσ for each cone σ, along with their closures Xσ, see for
instance [Kaj08] and [MS15, Chapter 6.2]. Moreover, Tevelev studied for which
varieties X a tropical compactification can be given by a simple normal crossing
divisor, calling these schön varieties. Earlier, schön hypersurfaces were known as
non-degenerate with respect to their Newton polygon in the works of Varchenko
[Var76a; Var76b] and Kouchnirenko [Kou76].

Thanks to a result of Brion, one may compute the Chow ring A•(CPΣ) of
a smooth toric variety CPΣ, where we use the notation R• for a graded ring
⊕kRk. Taking the cycle class map cyc: A•(CPΣ) → H2•(CPΣ) from the Chow
ring to the cohomology of the variety, and the inclusion i : X ↪→ CPΣ induces
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the further map i∗ : H2•(CPΣ) → H2•(X). Moreover, on the tropical side,
there is a similar cycle class map cyc: A•(CPΣ) → H2•(TPΣ) for the tropical
cohomology, which can in turn be composed with the map H2•(TPΣ) → H2•(X).
It is a result of Amini and Piquerez that the tropical cycle class map induces
an isomorphism ⊕kAk(CPΣ) ∼−→ ⊕kHk,k(X) to the central graded part of the
tropical cohomology [AP21, Theorem 7.1].

Equipped with the above maps, we proceed to define a partial inverse to the
tropical cycle class map by using the isomorphism and mapping all other classes
to zero. This leads to a map τ∗ : H•(X) → H•(X) relating tropical cohomology
and singular cohomology, and we give the following definition.

Definition 1.3.1 (Definition II.1.1). Let X ⊆ T be a subvariety, Σ a unimodular
fan with support X = trop(X), and X and X the corresponding compactifications.
We say that X is cohomologically tropical with respect to Σ if the induced maps
τ∗ : H•(Xσ) → H•(Xσ) are isomorphisms for all σ ∈ Σ.

There are two main reasons for demanding τ∗ to be an isomorphism for all
the strata. First and foremost, it permits a detailed study of which varieties are
cohomologically tropical through an inductive argument which we will return
to. Secondly, it allows us to extend the arguments from [IKMZ19] by replacing
terms in the Steenbrink mixed Hodge structure spectral sequence.

We show that, for schön varieties, the property of being cohomologically
tropical does not depend on the choice of underlying unimodular fan for
the compactification, provided it is supported on the tropicalization, see
Theorem II.4.4. We call a schön subvariety X ⊆ T cohomologically tropical
if it is cohomologically tropical with respect to any choice of unimodular fan
supported on the tropicalization.

Seeking a description of which schön varieties are cohomologically tropical,
we define a class of varieties which admit strong restrictions on their mixed
Hodge structures.

Definition 1.3.2 (Definition II.1.2). A non-singular subvariety X ⊆ T of the
torus is called wunderschön with respect to a unimodular fan Σ with support
trop(X) if all the open strata Xσ of the corresponding compactification X are
non-singular and connected, and the mixed Hodge structure on Hk(Xσ) is pure
of weight 2k for each k.

In particular, wunderschön varieties are schön by applying [Hac08, Lemma
2.7]. As an example, we note that a linear subspace of CPn, intersected with
the central torus (C∗)n, is wunderschön, see Section II.8.2. An argument using
the weight spectral sequence for the mixed Hodge structure shows that the
one-dimensional wunderschön varieties are necessarily rational curves punctured
in specific points Example II.2.5. We study the properties of wunderschön
varieties, showing first that the wunderschön property does not depend on the
chosen unimodular fan supported on the tropicalization in Theorem II.4.5. Next,
we show that the cohomology of a compactification of a wunderschön variety is
divisorial, in the sense that it is generated as a ring by the boundary divisors.
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Our main interest in wunderschön varieties stems from their role in the
classification of cohomologically tropical varieties. The main theorem of the
paper is the following.

Theorem 1.3.3 (Theorem II.6.1). Let X ⊆ T be a schön subvariety with
tropicalization X = trop(X). Then the following statements are equivalent.

(1) X is wunderschön and X is a tropical homology manifold,

(2) X is cohomologically tropical.

Moreover, if any of these statements holds, then X is Kähler.

In Section II.8.2, the above statements are shown to hold for complements of
complex hyperplane arrangements considered together with the Bergman fans
of their matroids. Showing that these complements are wunderschön is in part
done by appealing to work of Shapiro [Sha93] addressing the question of purity
of mixed Hodge structures of hyperplane arrangement complements.

This theorem forms an explicit link to the first paper of the thesis, as described
in Section 1.2. Indeed, the second condition of (1), i.e. that X is a tropical
homology manifold, is one of the main properties investigated in the first paper.
The conditions described therein for a fan to be a tropical homology manifold,
together with an argument about wunderschön varieties, are used in the third
paper of this thesis to show certain varieties are cohomologically tropical.

Equipped with this theorem, we prove the following generalization of the
Theorem 1.1.3 of Itenberg, Katzarkov, Mikhalkin and Zharkov.

Theorem 1.3.4 (Theorem II.7.1). Let π : X → D∗ be an algebraic family of
subvarieties in CPn parameterized by the punctured disk and let π : X → D be a
semistable extension. If the tropicalization Z ⊆ TPn is a tropical homology
manifold and all the open strata in X0 are wunderschön, then Hp,q(Z) is
isomorphic to the associated graded piece W2p/W2p−1 of the weight filtration in
the limiting mixed Hodge structure Hp+q

lim . The odd weight graded pieces in Hp+q
lim

are all vanishing.
Moreover, for t ∈ D∗, we have dim Hp,q(Xt) = dim Hp,q(Z), for all non-

negative integers p and q.

Essentially, the main property of tropical manifolds used in the proof is the
proof of Theorem 1.1.3 is the local isomorphism between tropical cohomology of
the Bergman fan and singular cohomology for a complement of a hyperplane
arrangement, which we replace by considering varieties which are merely
cohomologically tropical, then use the equivalent description obtained though
Theorem II.6.1.

With the above theorems in mind, one may seek to understand which varieties
are wunderschön. In dimension one, these are necessarily punctured rational
curves, see Example II.2.5, with one puncture for each divisor. In dimension two,
the compactification X of a wunderschön variety X must necessarily be a smooth
compact complex surface of irregularity q = 0 and geometric genus pg = 0,
as studied in detail for instance in [Dol10]. Beyond these simple observations,
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the classification of wunderschön varieties is open, and progress may yield new
examples of cohomologically tropical varieties. Refining the understanding of
schön hypersurfaces, i.e. those non-degenerate with respect to their Newton
polygon, to an understanding of wunderschön hypersurfaces might be a good first
step. We also note that there are some parallels between cohomologically tropical
varieties and the quasilinear tropical compactifications defined by [Sch23].

Another interesting question is to find direct applications of the more general
global Theorem II.7.1, in particular examples where tropical homology manifolds
and corresponding wunderschön strata occur naturally.

1.4 Paper three: Axiomatizing curve arrangements

The aim of the third paper of this thesis, Paper III, is to give a concrete family
of examples where the properties studied in the two first papers of the thesis
are satisfied. We seek to find fans which are tropical homology manifolds, and
for which a subclass are wunderschön and consequently also cohomologically
tropical.

In the same manner that matroids may be viewed as abstract axiomatizations
of hyperplane arrangements, we define arroids, which give a possible abstract
axiomatization for the incidence geometry of arrangements of curves in the plane.
To any arrangement of curves, one may associate an arroid. An arroid A consists
of an underlying set A where each element i is equipped with a degree di, along
with a multiset P of subsets of A. Each set p ∈ P is equipped with a multiplicity
function mp : p2 → Z, and the multiset P must satisfy a Bézout condition in
terms of the multiplicity functions. Moreover, when the multiplicity functions
are constant taking value one, the arroid is said to be transversal. We construct
a fan associated to each transversal arroid, and prove the following theorem.

Theorem 1.4.1 (Theorem III.4.6). For each transversal arroid A, there is a fan
ΣA, called the fan of A, which is a balanced tropical variety.

Using transversal arroids, we proceed to study the tropicalization of the
complements of very affine transverse arrangements of curves, i.e. containing at
least three lines intersecting generically, such that all curves of the arrangement
intersect pairwise transversely. In Section III.4.3, we show that for such
arrangements, the tropicalization of the complement is computed by the arroid
fan.

Theorem 1.4.2 (Theorem III.4.10). Let B be a transverse very affine arrangement
of curves in the plane P2

K . Then the tropicalization trop(XB) of the complement
is supported on the fan of the associated transversal arroid AB.

This recovers that the tropicalization of the complement of a line arrangement
is computed using its rank three matroid (see e.g. [MS15, Theorem 4.1.11]), in
terms of the Ardila–Klivans fan structure [AK06]. The difficulty in generalizing
beyond the transverse case lies primarily in understanding the resolution of
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singularities that arise when higher order intersections are allowed in the
arrangement, as was pointed out in [Cue12, p. 20].

Next, in the spirit of the second paper of this thesis, Paper II, we relate
the cohomology of the complement of a curve arrangement with the tropical
cohomology of the fan of its arroid.

In Proposition III.6.1, we show that the complement of a simple arrangement,
i.e. transverse very affine arrangements of lines and conics in P2

C with no
two intersection points containing exactly the same curves, is wunderschön.
This implies that the complements of simple arrangements are cohomologically
tropical if and only if the corresponding arroid is a tropical homology manifold
by Theorem II.6.1. Using equivalent conditions for an arroid fan to be a tropical
homology manifold given in Theorem III.5.4, this yields the following theorem.

Theorem 1.4.3 (Theorem III.6.2). Let XB be the complement of a simple
arrangement B. Then XB is cohomologically tropical if and only if the
corresponding arroid fan ΣAB is uniquely balanced along each of its rays.

This characterization relies upon using the unique balancing condition
described in Theorem I.4.8. We study which conditions this imposes on curve
arrangements in Section III.5.2.

Using Theorem III.6.2, we study the question of maximality for a real
arrangement and its complexification. Let X be a complex variety defined
over R, with X(R) its set of real points and X(C) its set of complex points. The
Smith-Thom inequality gives bounds for the sum of the Z/2Z-Betti numbers as
follows,

b•(X(R)) :=
∑
i≥0

bi(X(R)) ≤
∑
i≥0

bi(X(C)) =: b•(X(C)),

and the variety is maximal if equality is achieved. In [RS23], the authors
use a spectral sequence to give bounds on the Betti numbers of real algebraic
hypersurfaces arising from Viro’s patchworking. By relating tropical homology
and Hodge numbers of the complexification using the results of [IKMZ19],
Renaudineau and Shaw give bounds for Betti numbers of the real hypersurfaces in
terms of the Hodge numbers of their complexifications. This was later generalized
to certain higher codimension varieties in [RRS23]. Varieties satisfying these
Hodge-number inequalities are called Hodge expressive in [BS22], and are used
to study moduli spaces of vector bundles on curves. This has led Ambrosi
and Manzaroli [AM22] to study the central fiber of a totally real semistable
degeneration over a curve, giving conditions on the components of the central
fiber for each of the nearby fibers to be Hodge expressive.

Using Theorem III.7.3, as well as the wunderschön and cohomologically
tropical properties, we give the following description of certain varieties satisfying
the conditions of [AM22].

Theorem 1.4.4 (Theorem III.7.5). Let B be a simple arrangement of real curves
in P2

C, with all intersection points being real, and such that the tropicalization

14
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Trop(XB), which is supported on the arroid fan ΣAB , is a tropical homology
manifold. Then the following four properties are satisfied:

(a) Hi(XB(R);Z/2Z) = 0 for i ≥ 1,

(b) XB is a maximal variety,

(c) the mixed Hodge structure on Hi(XB(C);Q) is pure of type (i, i) and
Hi(XB(C);Z) is torsion-free for i ≥ 1, and

(d) dimQ Hi(XB(C);Q) =
∑

j dimQ Hi,j(ΣAB ) for each i ≥ 0.

We construct an infinite family of maximal surfaces in Example III.7.4
satisfying the properties of Theorem III.7.5, which gives examples of the types of
variety required in [AM22], using conditions (a), (b) and (c). Moreover, in [RS23],
Renaudineau and Shaw study real algebraic hypersurfaces near the tropical limit,
giving bounds for Betti numbers in terms of tropical homology, which may be
compared to condition (d) above.
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Paper I

Tropical Poincaré duality spaces

Edvard Aksnes

I

Abstract

The tropical fundamental class of a rational balanced polyhedral fan
induces cap products between tropical cohomology and tropical Borel–
Moore homology. When all these cap products are isomorphisms, the fan
is said to be a tropical Poincaré duality space. If all the stars of faces
also are such spaces, such as for fans of matroids, the fan is called a local
tropical Poincaré duality space.

In this article, we first give some necessary conditions for fans to be
tropical Poincaré duality spaces and a classification in dimension one.
Next, we prove that tropical Poincaré duality for the stars of all faces of
dimension greater than zero and a vanishing condition implies tropical
Poincaré duality of the fan. This leads to necessary and sufficient conditions
for a fan to be a local tropical Poincaré duality space. Finally, we use
such fans to show that certain abstract balanced polyhedral spaces satisfy
tropical Poincaré duality.

Contents

I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 23
I.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 26
I.3 Tropical geometry of fans . . . . . . . . . . . . . . . . . . . 32
I.4 Tropical Poincaré duality . . . . . . . . . . . . . . . . . . . 42
I.5 Local tropical Poincaré duality spaces . . . . . . . . . . . . 48
I.6 Tropical Poincaré duality for polyhedral spaces . . . . . . . 57
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

I.1 Introduction

For an integer p ≥ 0, a rational polyhedral fan Σ (Definition I.2.2) and a
commutative ring R, [IKMZ19] introduced the tropical homology H•(Σ, FR

p ) and
tropical Borel–Moore homology HBM

• (Σ, FR
p ), along with dual constructions of

tropical cohomology H•(Σ, Fp
R) and tropical cohomology with compact support
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H•
c (Σ, Fp

R), see Definition I.3.6. These can be computed in many different ways,
see e.g. [MZ14; IKMZ19; JSS19; GS23].

The balancing condition of tropical geometry (see [BIMS15, Definition 5.8]),
can be formulated homologically as the existence of a particular fundamental class
[Σ, w] ∈ HBM

d (Σ, FR
d ) in tropical Borel–Moore homology ([MZ14, Proposition

4.3], [JRS18, Remark 4.9] and Definition I.3.12), depending on assigning R-valued
weights w to maximal faces. One can use the fundamental class to define a cap
product

⌢ [Σ, w] : Hq(Σ, Fp
R) → HBM

d−q (Σ, FR
d−p)

for all p, q ∈ {0, . . . , d}, see [JRS18, Definition 4.11] and Definition I.3.19. If
these maps are isomorphisms for all p, q ∈ {0, . . . , d}, one says that the fan
satisfies tropical Poincaré duality over R or is a tropical Poincaré duality space
over R, see Definition I.4.1. We use the abbreviation TPD for tropical Poincaré
duality.

This paper, which generalizes and deepens the results from the author’s
master’s thesis [Aks19], studies two questions related to tropical Poincaré duality
over a given commutative ring R.

Question I.1.1. Which fans satisfy TPD over R?

The fan of a matroid is a TPD space over R and Z by [JSS19, Proposition
4.27] and [JRS18]. Moreover, motivating the question, there are fans satisfying
TPD which are not fans of matroids, see Example I.4.4.

A useful property of the cap product is that, for any commutative ring
R, when it is non-zero, it is injective (Proposition I.3.23). Using this in the
case where R is a field, we can work with Euler characteristics and dimensions
of homology groups to give a criterion for a fan to have TPD, under some
vanishing assumptions (Proposition I.4.6). Furthermore, we completely classify
one-dimensional TPD spaces over an arbitrary commutative ring R.

Theorem I.4.8. Let R be a commutative ring, and (Σ, w) an R-balanced fan of
dimension one. Then (Σ, w) satisfies tropical Poincaré duality over R if and
only if it is uniquely R-balanced and all the weights are units in R.

In Proposition I.4.11, we show that fan tropical hypersurfaces in Rn must
have simplexes as Newton polytopes.

Question I.1.2. Which fans satisfy TPD over R at each of its faces?

By this, we mean that for each face γ ∈ Σ, the star fan γ⪰ (Definition I.2.6)
should be a TPD space over R. We will call this type of fans local tropical
Poincaré duality spaces over R (Definition I.5.9), which is equivalent to the
notion of tropical smoothness defined by Amini and Piquerez [AP21] for R = Z.
Fans of matroids can be shown to be local TPD spaces.

Straddling the space between I.1.1 and I.1.2, we prove the following theorem,
which shows that when the stars of the faces of a fan are TPD spaces, so is the
whole fan, under some vanishing conditions on Borel–Moore homology.
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Theorem I.5.4. Let R be a principal ideal domain, and (Σ, w) be an R-balanced
fan of dimension d ≥ 2, with HBM

q (Σ, FR
p ) = 0 for q ̸= d, for all p. If (γ⪰, w)

satisfies TPD over R, for each γ ∈ Σ with γ⪰ ̸= Σ, then (Σ, w) satisfies TPD
over R.

Noticing the similarity of this result to the conditions for being a local TPD
space, we are led to the following characterization of local TPD spaces.

Theorem I.5.10. Let R be a principal ideal domain, and (Σ, w) a d-dimensional
R-balanced fan. Then Σ is a local TPD space over R if and only if
HBM

q (γ⪰, FR
p ) = 0 for all γ ∈ Σ and q ≠ d, and for all faces β of codimension

1, the star fans β⪰ are TPD spaces over R.

In the two-dimensional case, we use Theorem I.5.4 to show that, assuming
the vanishing of parts of Borel–Moore homology, a fan is a TPD space if and
only if it is a local TPD space, see Proposition I.5.7. This motivates two new
questions.

I.5.13 (Geometry of BM homology vanishing). Let (Σ, w) be an R-balanced d-
dimensional fan. Can the fans with HBM

q (γ⪰, FR
p ) = 0 for each face γ ∈ Σ,

q ̸= d and all p be geometrically characterized?

I.5.14 (Global versus Local TPD). Let (Σ, w) be an R-balanced fan which satisfies
TPD over R. Does γ⪰ also satisfy TPD over R for each γ ∈ Σ?

In the final part of this paper, we turn to generalizations for rational polyhedral
spaces, see [JRS18; JSS19], and abstract tropical R-cycle (see Definition I.6.1).
These can be equipped with tropical homology and cohomology groups, and a
balancing condition for abstract tropical R-cycles leads to cap products. Tropical
manifolds are spaces equipped with charts to Bergman fans of matroids. These
are studied in [JRS18; JSS19; GS23], and are shown to satisfy TPD over R and
Z. Thanks to [Yam21], for tropical Calabi-Yau complete intersections, there is a
contraction map to an integral affine manifold with singularities (IAMS), relating
tropical cohomology and affine homology. For IAMS, there is a cap product map
which can be shown to be an isomorphism in certain cases by recent work of
[Rud21].

The Mayer–Vietoris arguments used in [JRS18] to show TPD on tropical
manifolds can be applied more broadly. We say that an abstract tropical cycle
is a local TPD space over R if it is built from fans which are local TPD spaces
over R. These are the building blocks of the smooth tropical cycles as defined in
[AP21]. We then prove the following theorem.

Theorem I.6.5. Let X be a local tropical Poincaré duality space over R. Then
X satisfies tropical Poincaré duality over R.

Recently, [AP20] establishes a full “Kähler package” for smooth projective
tropical cycles, working with rational coefficients. They relate TPD of the
canonical compactifications of Bergman fans of matroids to the Poincaré duality
of the Chow ring of a matroid established in [AHK18], which was used in proving
the Heron–Rota–Welsh conjecture. It is suggested in [Huh18] that such “Chow
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rings” satisfying three properties, collectively dubbed the “Hodge package”,
should be responsible for the log-concavity of many sequences which arise in
mathematics.

In forthcoming work [AAPS23], the authors show that the Tropical Poincaré
duality property is a critical ingredient in relating the topology of a variety to
the tropical cohomology of its tropicalization.

Organization

In Section I.2, we set conventions for fans, stars and integer weights. Then we
define cellular (co)sheaves and cellular (co)sheaf (co)homology.

In Section I.3, we define the tropical multi-tangent cosheaves and sheaves,
which we use to define tropical (co)homology. This is used to describe a
generalized version of the balancing condition in tropical geometry, to generalize
beyond integer weights.

In I.4, we define the TPD over a ring R, and give some necessary conditions.
Moreover, we give a complete classification in dimension one, and some criteria
in codimension one of Rn for TPD to hold, which forms a first step towards
answering I.1.1.

In Section I.5, we turn to I.1.2. We first relate TPD at the stars of faces to
TPD of the whole fan, which is then used to characterize local TPD spaces. We
then use our dimension one result to give a more geometric description of the
characterization.

Finally, in Section I.6, we use local TPD spaces to construct abstract tropical
cycles satisfying tropical Poincaré duality.
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I.2 Preliminaries

In this section, we define and give references to the main objects and concepts used
in the remainder of the article. In Section I.2.1, we introduce some conventions for
weighted fans and the balancing condition, and for cellular sheaves and cosheaves
in Section I.2.2. Finally, we introduce notions of homology and cohomology of
cosheaves and sheaves in Section I.2.3.
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Preliminaries

I.2.1 Cones, fans and stars

Let N ∼= Zn be a lattice, and NR = N ⊗Z R ∼= Rn be the associated real vector
space.

Definition I.2.1. A rational polyhedral cone σ in a lattice N is a set of the form

σ =
{∑m

i=1aivi | ai ∈ Z≥0
}

⊂ N

for vectors vi ∈ N , such that σR = σ ⊗Z R ⊂ NR is closed and strictly convex,
hence has a vertex at the origin.

The lattice LZ(σ) is the saturated sublattice of N generated by σ, and the
dimension of a cone is the rank of LZ(σ).

Another cone τ is said to be a face of σ if there is some element m ∈
HomZ(N,Z), with m(x) ≥ 0 for all x ∈ σ, i.e. a positive functional, such that
τ = {x ∈ σ | m(x) = 0}. Any face can also be exhibited by setting particular
coefficients ai to 0.

For τ a face of σ, the set LZ(τ) ⊂ LZ(σ) is a sublattice. For dim τ =
dim σ − 1, we may select a primitive integer vector vσ/τ ∈ N such that
LZ(σ) = LZ(τ) + Zvσ/τ .

Definition I.2.2. A rational polyhedral fan Σ is a finite collection of rational
polyhedral cones in N such that:

• For any cone σ ∈ Σ, if τ is a face of σ, then τ ∈ Σ,

• For σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of σ1 and σ2.

The cones in Σ are also called faces, and the collection of faces of dimension i
is denoted by Σi. The dimension of Σ is the supremum of the dimensions of
cones of Σ. We write τ ⪯ σ if τ is a face of σ and τ ≺ σ if τ is a proper face,
which gives a partial ordering on Σ. We say that a face σ ∈ Σ is maximal if
it is maximal with respect to the ordering ⪯. We will require that all fans are
pure dimensional in the sense that all maximal by inclusion faces are of equal
dimension.

Abusing notation, we also write Σ for the category associated to the
partial ordering ⪯, whose objects are the cones σ ∈ Σ, with a morphism
τ → σ ∈ HomΣ(τ, σ) if and only if τ ⪯ σ.

Note that all cones intersect in a common minimal cell, and since we required
each cone to have a vertex, this is the unique vertex v in Σ. Moreover, a rational
polyhedral fan corresponds to a cell complex in the sense of [She85; Cur14], when
considering the fan as glued abstractly from the interiors of the cones.

Example I.2.3. Consider the fan Σ displayed in Figure I.1, which consists of
the rays τ1, τ2, τ3, τ4 and the vertex v. The fan is pure dimensional, its maximal
faces are the τi and it has dimension 1. It consists of the union of the line x = 0
and y = 0 when considered in NR. We have v ≺ τi for each i.
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Example I.2.4. Another example of a fan is shown in Figure I.2. This fan has
one vertex v, three one-dimensional cones τi, and three two-dimensional cones
σi. For instance, the faces of σ1 are the cones τ1 and τ2 as well as the vertex v.

v τ1

τ2

τ3

τ4

Figure I.1: The cross

v
τ1

τ2

τ3

σ1

σ2

σ3

Figure I.2: The complete fan

Fans of particular interest in tropical geometry are the Bergman fans of
matroids (see [AK06; Zha13] for definitions). These serve as the local models of
abstract tropical manifolds (see [MZ14, Section 1.6]).

Example I.2.5. Let M be a matroid on E = {0, . . . , n} with lattice of flats
L , and let Z{e0, . . . , en} be the lattice of rank n + 1 generated by elements
e0, . . . , en. Let N be the quotient defined by

0 Z{e0 + · · · + en} Z{e0, . . . , en} N 0.π

For any subset S ⊆ E, let pS =
∑

i∈S π(ei) in N , so that in particular pE = 0.
For any chain F• of flats of the matroid M ,

F• = {∅ ⊊ F1 ⊊ · · · ⊊ Fk ⊊ E} ⊆ L .

the cone associated to F• is the non-negative span

σ(F•) =
{

k∑
i=1

aipFi | ai ≥ 0, i = 1, . . . , k

}
.

The Bergman fan of M is the simplicial fan Σ(M) consisting of cones σ(F•) for
all flags of flats F•.

The U3,4 matroid on the set E = {0, . . . , 3} given by the rank function
r : 2E → Z≥0 taking values r(S) = min(|S|, 3) has the lattice of flats given by
Figure I.3. The Bergman fan of this matroid is shown in Figure I.4.

Definition I.2.6. The star γ⪰ at a cone γ ∈ Σ is the rational polyhedral fan with
underlying set ∪γ⪯κκ̃ ⊂ N , where κ̃ = {t(x − y) | t ∈ Z≥0, x ∈ κ, y ∈ γ} ⊆ N ,
subdivided into rational polyhedral cones with a shared vertex.

The cone at a face γ ∈ Σ is the fan γ⪯ consisting of the faces κ ∈ Σ for each
κ ⪯ γ. In particular the vertex v of Σ is the minimal cell in each cone.
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Figure I.3: Lattice of flats of the U3,4
matroid.

Figure I.4: Bergman fan of the U3,4
matroid, visualization by [polymake].

Example I.2.7. We give two examples of stars:

I.2.7.1. In the fan from Example I.2.4, the cone τ1 is contained in the
cones σ1 and σ2. These give rise to the sets σ̃1 = {(a, b) ∈ N | a ≥ 0}
and σ̃2 = {(a, b) ∈ N | a ≤ 0}, so that the star τ1⪰ has underlying set equal to
the whole of N .

I.2.7.2. In the Bergman fan of the U3,4 matroid, the star at any of the one-
dimensional rays is has underlying set equal to a product of Z together with the
“tropical line”, i.e. the fan with rays (1, 1), (−1, 0), (0, −1) and a vertex at (0, 0).

In both cases, these sets must then be cut up so as to form a rational polyhedral
fan.

An integer weight function on a rational polyhedral fan Σ of dimension d is
a function w : Σd → Z. We are interested in weighted fans satisfying the usual
tropical balancing condition. This condition is equivalent to being a Minkowski
weight in the sense of [FS97]. For more on the balancing condition, see for
instance [MS15, Definition 3.3.1] or [BIMS15, Definition 5.7].

Definition I.2.8. Let Σ be a rational polyhedral fan of dimension d with weights
w : Σd → Z. We say that Σ together with w is balanced at a face β ∈ Σd−1 if∑

β≺α

w(α)vα/β ∈ LZ(β),

using the notation from Definition I.2.1. We say Σ together with w is balanced
if it is balanced along each face β ∈ Σd−1.

Example I.2.9. Our previous examples of fans have all been balanced:
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I.2.9.1. The fan of dimension one discussed in Example I.2.3 and shown in
Figure I.1 is balanced, for a given weight function w : Σ1 → Z, if and only if
w(τ1) = w(τ3) and w(τ2) = w(τ4).

I.2.9.2. The fan of dimension two in Example I.2.4 is also balanced if and
only if the weight function w : Σ1 → Z is such that w(σ1) = w(σ2) = w(σ3).

I.2.9.3. It follows from [AK06, Proposition 2], that the stars γ⪰ of faces γ
in the Bergman fans of a matroid are themselves Bergman fans of matroids.
It is shown in [AHK18, Proposition 5.2] that, for the Bergman fan Σ(M) of
a matroid M , the only weight functions which satisfy the balancing condition
are the constant ones. The uniqueness of such a weight function follows from
tropical Poincaré duality in [JRS18, Proposition 5.5] and the earlier [Huh14,
Theorem 38]. By our later Definition I.3.12, this will mean that these fans are
uniquely Z-balanced.

I.2.2 Cellular sheaves and cellular cosheaves

One can define cellular sheaves and cellular cosheaves of modules on a polyhedral
fan:

Definition I.2.10. Let R be a commutative ring, Σ a rational polyhedral fan.
Then:

• A cellular R-sheaf G is a functor G : Σ → ModR.

• A cellular R-cosheaf F is a functor F : Σop → ModR.

A morphism of sheaves or cosheaves is simply a natural transformation of functors
or contravariant functors, respectively.

Remark I.2.11. The category Σ, when viewed as a set, can be given the Alexandrov
topology, such that cellular sheaves and cosheaves in fact are sheaves and cosheaves
with respect to this topology. For more on cellular sheaves and cosheaves, see
[Cur14].

We have considered the fan Σ as a category with morphisms τ → σ whenever
τ is a face of σ, so that a sheaf G induces a map G(τ) → G(σ), and a cosheaf
F induces a map F(σ) → F(τ). This convention is in agreement with [She85;
Cur14], but reversed from [Bri97; How08] in the sense that their sheaves are our
cosheaves, and vice versa.

Example I.2.12. Let Σ be a rational polyhedral fan. For a module M over a
ring R, the constant cosheaf MΣ with values in M is the cosheaf defined as a
functor MΣ : Σop → ModR taking all objects to M and all morphisms to idM .

Similarly, the constant sheaf MΣ with values in M is the sheaf defined as a
functor MΣ : Σ → ModR taking all objects to M and all morphisms to idM .

30



Preliminaries

I.2.3 Cellular homology and cohomology

Considering the fan Σ as a subset of NR, we select an orientation for each cone
σ ∈ Σ. For each τ ≺ σ such that dim(τ) = dim(σ) − 1, we keep track of the
relative orientations by writing O(τ, σ) = 1 if the restriction of the orientation
of σ to τ coincides with the orientation of τ , and O(τ, σ) = −1 if it reverses it.
In the two next definitions, we use the orientation O(τ, σ) = ±1 to construct
certain (co)chain complexes for a given (co)sheaf. These definitions are equal
to the ones in [She85; Cur14; KSW17], and reversed from [Bri97; How08], who
index by codimension.

Definition I.2.13. Given a cellular sheaf G, the cellular cochain groups and
cellular cochain groups with compact support are defined, respectively, by

Cq(Σ, G) :=
⊕

σ∈Σq

σR compact

G(σ) and Cq
c (Σ, G) :=

⊕
σ∈Σq

G(σ),

for q ≥ 0, where σR is as in Definition I.2.1. The cellular cochain maps

dq : Cq(Σ, G) → Cq+1(Σ, G) and dq : Cq
c (Σ, G) → Cq+1

c (Σ, G)

are given component-wise for τ ∈ Σq and σ ∈ Σq+1 with τ ≺ σ by dτσ : G(τ) →
G(σ), where

dτσ := O(τ, σ)G(τ → σ).

If τ ̸⪯ σ, we let the map dτσ be 0.
The cohomology groups H•(Σ, G) and H•

c (Σ, G) of these complexes are the
cellular sheaf cohomology and cellular sheaf cohomology with compact support
with respect to the sheaf G.

Definition I.2.14. Given a cellular cosheaf F , the cellular chain group and
Borel–Moore cellular chain groups are defined, respectively, by

Cq(Σ, F) :=
⊕

σ∈Σq

σR compact

F(σ) and CBM
q (Σ, F) :=

⊕
σ∈Σq

F(σ),

for q ≥ 0, where σR is as in Definition I.2.1. The cellular chain maps

∂q : Cq(Σ, F) → Cq−1(Σ, F) and ∂q : CBM
q (Σ, F) → CBM

q−1 (Σ, F)

are given component-wise for σ ∈ Σq and τ ∈ Σq−1 by ∂στ : F(σ) → F(τ), where

∂στ := O(τ, σ)F(σ → τ).

If τ ̸⪯ σ, we let the map ∂στ be 0.
The homology groups H•(Σ, F) and HBM

• (Σ, F) of these complexes are the
cellular cosheaf homology and cellular Borel–Moore cosheaf homology with respect
to F .
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Proofs that the cellular (co)chain groups and maps defined above form
(co)chain complexes can be found in [Cur14, Definitions 6.2.6-7] and [She85,
Theorem 1.1.3].

Remark I.2.15. The above definitions of cellular cohomology work in the more
general setting of polyhedral complexes. Since we are working with pointed
polyhedral fans, the unique compact cell is the vertex v. Then, for any sheaf
G on a fan Σ, the cellular cochain groups Cq(Σ, G) are trivial for q > 0, and
therefore:

Hq(Σ, G) =
{

G(v) for q = 0,
0 otherwise.

Similarly, for any cosheaf F , the cellular chain groups Cq(Σ, F) are trivial for
q > 0, thus:

Hq(Σ, F) =
{

F(v) for q = 0,
0 otherwise.

Example I.2.16. Consider the fan from Example I.2.3, with orientations chosen
so that O(v, τi) = 1 for all i. The Borel–Moore homology of the constant cosheaf
ZΣ is the homology of the complex

0 Z4 Z 0,
∂1

where the matrix ∂1 is indexed by the τi and given by

∂1 = (O(v, τi) idZ)τi∈Σ1 = (1 , 1 , 1 , 1).

The Borel–Moore homology becomes HBM
1 (Σ,ZΣ) = Z3 and HBM

0 (Σ,ZΣ) = 0.

I.3 Tropical geometry of fans

In this section, we introduce particular cellular (co)sheaves on fans which are of
interest in tropical geometry. After examining some properties of the resulting
tropical (co)homology, we use this to define the balancing condition in tropical
geometry. Finally, we define the tropical cap product associated to a balancing
of the fan. We then introduce particular sheaves of interest in tropical geometry.
Next, we generalize the balancing condition on fans to weights in arbitrary rings,
which finally leads to a treatment of tropical Poincaré duality over arbitrary
commutative rings.

I.3.1 Tropical sheaves and cosheaves

For tropical (co)homology, the following sheaves and cosheaves are of interest.
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Definition I.3.1 ([IKMZ19, Definition 13]). Let Σ be a fan of dimension d in N .
For σ ∈ Σ, let LZ(σ) be the lattice of integer points parallel to the cone σ. For
p = 1, . . . , d, the p-th multi-tangent cosheaf FZ

p is the cellular Z-cosheaf defined
by the data:

• For σ ∈ Σ, one has FZ
p (σ) :=

∑
σ⪯γ

∧p
LZ(γ) ⊆

∧p
N .

• For τ ⪯ σ, the morphism (σ → τ) ∈ HomΣop(σ, τ) becomes the map
ισ,τ : FZ

p (σ) → FZ
p (τ), which is induced by the natural inclusion.

In the p = 0 case, we define FZ
0 = ZΣ, with all maps being the identity.

Furthermore, the cellular cosheaf FZ
p also gives rise to a cellular sheaf Fp

Z
which is defined by Fp

Z(σ) := FZ
p (σ)∗, with morphisms ρτ,σ : Fp

Z(τ) → Fp
Z(σ)

defined by dualizing ισ,τ : FZ
p (σ) → FZ

p (τ).
Finally, following [JRS18], for any ring R, we define a cosheaf FR

p by taking
the tensor product FR

p (σ) = FZ
p (σ) ⊗Z R, giving an R-module, and tensoring

the maps as well. Dualizing yields a sheaf Fp
R.

Example I.3.2. We compute some values of these cosheaves:

I.3.2.1. For Example I.2.3, taking the ray τ1, we have that FZ
1 (τ) = LZ(τ) =

⟨(1, 0)⟩Z ⊂ Z2. For the central vertex v, we have

FZ
1 (v) =

4∑
i=1

LZ(τi)

= ⟨(1, 0)⟩Z + ⟨(0, 1)⟩Z + ⟨(−1, 0)⟩Z + ⟨(0, −1)⟩Z = Z2.

The cosheaf FZ
0 is merely the constant cosheaf taking value Z, so that FZ

0 (τi) = Z
and FZ

0 (v) = Z.

I.3.2.2. For Example I.2.4, we have that FZ
2 (σ1) =

∧2
LZ(σ2) = ⟨(1, 0) ∧

(0, 1)⟩Z ∼= Z.

Remark I.3.3. For any Z-module M and commutative ring R, the product
MR := M ⊗Z R is an R-module. Moreover, by [Bou98, Proposition III.7.5.8],
we have

∧p
MR

∼= (
∧p

M) ⊗Z R. In particular, for σ ∈ Σ a maximal face of a
d-dimensional fan, LR(σ) := LZ(σ) ⊗Z R is a free R-module of dimension d, and
Fp

R(σ) = (
∧p

LZ(σ)) ⊗Z R ∼=
∧p

LR(σ).
Remark I.3.4. Let Σ be a fan of dimension d. For any α ∈ Σd, by Remark I.3.3
we have FR

d (α) =
∧d

LR(α) ∼= R. Given a choice of orientation for α, we can
select the unique generator Λα ∈ FZ

d (α) =
∧p

LZ(σ) compatible with the chosen
orientation, and abusing notation, we let Λα ∈ FR

d (α) ∼= (
∧p

LZ(σ))⊗Z R denote
the corresponding element Λα ⊗ 1R ∈ FR

d (α).

Example I.3.5. In Example I.2.4, suppose we choose orientations such that all
the one-dimensional rays point outward, with all the two-dimensional cones
being oriented clockwise. Choose the standard basis e1, e2 for the ambient lattice
N . We then have Λσ1 = e1 ∧ e2, Λσ2 = e1 ∧ e2 and Λσ3 = e1 ∧ e2.
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Definition I.3.6. The cochain complex (C•(Σ, Fp
R), δ) from Definition I.2.13 has

cohomology groups Hq(Σ, Fp
R) which are called the (cellular) tropical cohomology

groups with R-coefficients of Σ. Moreover, the cohomology groups Hq
c (Σ, Fp

R)
of the complex (C•

c (Σ, Fp
R), δ) are called the (cellular) compact support tropical

cohomology groups with R-coefficients of Σ.
Similarly, the chain complex (C•(Σ, FR

p ), ∂) from Definition I.2.14 has
homology groups Hq(Σ, FR

p ) which are called the (cellular) tropical homology
groups with R-coefficients of Σ. Finally, the (cellular) tropical Borel–Moore
homology groups with R-coefficients HBM

q (Σ, FR
p ) are the homology groups of

the chain complex (CBM
• (Σ, FR

p ), ∂).

Proposition I.3.7. The tropical cohomology with R-coefficients of any fan Σ is

Hq(Σ, Fp
R) =

{
Fp

R(v) for q = 0,
0 otherwise,

where v ∈ Σ is the vertex.

Proof. This follows from Remark I.2.15. ■

Example I.3.8. Consider again the 1-dimensional fan from Example I.2.3.
Since it is of dimension 1, the only Fp

R sheaves are F0
R

∼= RΣ and F1
R. By

Proposition I.3.7, the only non-zero cohomology groups are H0(Σ, F0
R) = R and

H0(Σ, F1
R) = F1

R(v) = R2.
Similarly, the only FR

p cosheaves are FR
0

∼= RΣ and FR
1 . The computation

of the homology with the constant cosheaf ZΣ given in Example I.2.16 carries
through to RΣ, giving HBM

1 (Σ, FR
0 ) = R3 and HBM

0 (Σ, FR
0 ) = 0. Finally, to

compute the Borel–Moore homology for FR
1 , we have the chain complex

0 ⊕τi∈Σ1FR
1 (τi) FR

1 (v) 0.
∂1

Selecting the Z-basis e1 = (1, 0), e2 = (0, 1) for N , we can write this complex as

0 ⟨(1, 0)⟩ ⊕ ⟨(0, 1)⟩ ⊕ ⟨(−1, 0)⟩ ⊕ ⟨(0, −1)⟩ ⟨(1, 0), (0, 1)⟩ 0,
∂1

where ∂1 is now the direct sum of the inclusion maps, and everything is suitably
tensored with R. The Borel–Moore homology can then be shown to be given by
HBM

0 (Σ, FR
1 ) = 0 and HBM

1 (Σ, FR
1 ) = ⟨(a, b, a, b) | a, b ∈ R⟩ ∼= R2.

Example I.3.9. We now show how to perform the above computations using
the [KSW17] package for [polymake], when working with rational coefficients.
A code example is given in Figure I.5. To compute with [polymake], one
specifies the rays of a fan, as well as which rays form a cone. The fan must
be input in projective coordinates, so that there is a distinct projection point
[1, 0, 0], with all rays expressed using an embedding of N into the hyperplane
H = {(x0, x1, x2) | x0 = 0}. Thus the ray τ1 is [0, 1, 0]. Similarly the cones must
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all be given as including the projection point [1, 0, 0], so that the one-dimensional
ray τ2 is given as [0, 2].

application ’fan’;
$fan = new fan::PolyhedralFan(

INPUT_RAYS=>[
[1,0,0],[0,1,0],[0,0,1],[0,-1,0],[0,0,-1]

],
INPUT_CONES =>[

[0,1],[0,2],[0,3],[0,4],
]

);
$complex = new fan::PolyhedralComplex($fan);
$dim = $complex -> AMBIENT_DIM;

@cohom_dimensions = ();
@BM_dimensions = ();
for(my $i=0;$i<$dim;$i++){

my $fi = $complex->fcosheaf($i);
my $si=$complex->usual_chain_complex($fi);
my $bmi=$complex->borel_moore_complex($fi);
push @cohom_dimensions, topaz::betti_numbers($si);
push @BM_dimensions, topaz::betti_numbers($bmi);

}

print "H^q(Sigma, F^p) dimensions; q=columns, p=rows";
print join("\n", @cohom_dimensions),"\n\n";
print "H_q^{BM}(Sigma, F_p) dimensions; q=columns, p=rows";
print join("\n", @BM_dimensions),"\n\n";

Figure I.5: Code in [polymake] to compute the tropical cohomology and Borel–
Moore homology in Example I.2.3

Note also that one may use the command $complex -> VISUAL; to receive a
visualisation for two- and three-dimensional fans. The output of the code in
Figure I.5 is shown in Figure I.6:

H^q(Sigma, F^p) dimensions; q=columns, p=rows
1 0
2 0

H_q^{BM}(Sigma, F_p) dimensions; q=columns, p=rows
0 3
0 2

Figure I.6: Output from Figure I.5

Recall from Definition I.2.6 that one must subdivide the stars γ⪰ of faces
γ ∈ Σ to obtain a fan structure. The next proposition shows that the tropical
cohomology of γ⪰ is determined directly by FR

p (γ), and that the tropical Borel–
Moore homology can be computed using a simpler complex than the one coming
from the subdivision.
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Proposition I.3.10. Let Σ be a fan and γ ∈ Σ a face of dimension r. Let Fp
R,Σ

and Fp
R,γ denote the p-th multi-tangent sheaves on Σ and γ⪰ respectively. Then

H0(γ⪰, Fp
R,γ) ∼= Fp

R,Σ(γ).

Similarly, let FR,Σ
p and FR,γ

p denote the p-th multi-tangent cosheaves on Σ and
γ⪰ respectively. Then the Borel–Moore homology HBM

q (γ⪰, FR,γ
p ) is isomorphic

to the homology of the complex

0
⊕

α∈Σd

α≻γ

FR,Σ
p (α) · · ·

⊕
κ∈Σr+1

κ≻γ

FR,Σ
p (κ) FR,Σ

p (γ) 0,
∂q|κ≻γ∂q|α≻γ

where we define ∂γ
q = ⊕∂στ with the sum taken over all σ, τ ⪰ γ, σ ∈ Σq and

τ ∈ Σq−1.

Proof. First, by Definition I.2.6, we must choose a subdivision of the space with
support given by the cones κ̃ = {t(x − y) | t ≥ 0, x ∈ κ, y ∈ γ} for each κ ⪰ γ,
and we will have only one compact cell given by the created vertex ṽ ∈ γ⪰. By
Remark I.2.15, we have H0(γ⪰, Fp

R,γ) = Fp
R,γ(ṽ). Then, observe that for each

κ ≻ γ, the lattice is unchanged in the sense that LZ(κ̃) = LZ(κ) as subspaces of
N , and each maximal dimensional face α in the subdivision of γ⪰ is a subspace
of a κ̃. In particular, this implies that Fp

R,γ(ṽ) ∼= Fp
R,Σ(γ).

Next, observe that the Borel–Moore homology is the equal to the regular
homology of the fan when seen as a subset of the one-point compactification
N ∪ {∞} of the ambient lattice N . Then every cone σ ∈ γ⪰ becomes a disk
σ∞ in N ∪ {∞}, and we have a CW complex structure on the underlying set
of γ⪰ ∪ {∞}. Then, similarly to [MZ14, Section 2.2] and [JRS18, Remark 2.8],
note that:

CBM
q (γ⪰, FR

p ) = ⊕σ∈γq
⪰

FR
p (σ) = ⊕σ∈γq

⪰
Hq(σ∞, ∂(σ∞), FR

p (σ)),

where the right hand side becomes the cellular homology with coefficients in
the local system induced by FR

p of the CW complex γ⪰ ∪ {∞}. This can be
computed with an arbitrary CW structure. Therefore, the given complex, which
is the local system homology of the CW structure induced on |γ⪰ ∪ {∞}| by
taking the non-subdivided cell structure of γ⪰ will compute the Borel–Moore
homology of the FR

p cosheaf. ■

The above proposition shows that, when working with stars of faces in a fan,
the particular cellular structure does not change the tropical (co)homology. This
is not the case for general (co)sheaves, see for instance the wave tangent sheaves
defined in [MZ14, Section 3].

I.3.2 Balancing in tropical geometry

It was observed in [JRS18, Remark 4.9] and [MZ14, Proposition 4.3] that the
balancing condition from Definition I.2.8 can be equivalently formulated as
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the condition that a particular tropical Borel–Moore chain is closed. In this
subsection, we use this observation to form a generalization of the balancing
condition to arbitrary commutative rings.

Definition I.3.11. Let R be a ring. An R-weight function w : Σd → R on a
d-dimensional fan Σ is a function such that for all α ∈ Σd, the weight w(α) is
not a zero-divisor. A pair (Σ, w) will be called an R-weighted fan.

Definition I.3.12. An R-weighted fan (Σ, w) is R-balanced if the fundamental
chain Ch(Σ, w) given by

Ch(Σ, w) := (w(α)Λα)α∈Σd ∈ CBM
d (Σ, Fd)

is a cycle, where the Λα are chosen as in Remark I.3.4. In this case, we have
HBM

d (Σ, FR
d ) ̸= 0, together with an induced fundamental class

[Σ, w] = [Ch(Σ, w)] ∈ HBM
d (Σ, FR

d ).

If HBM
d (Σ, FR

d ) = ⟨[Σ, w]⟩ ∼= R, we say that Σ is uniquely R-balanced by w.

Example I.3.13. We now compute the fundamental chain in the fan Σ of
Example I.2.4. Choose orientations such that the elements Λσi are as in
Example I.3.5. Moreover, we choose a weight function assigning the value
1 to each of the cones σi. Then the fundamental chain is:

(Λσi)3
i=1 = (e1 ∧ e2, e1 ∧ e2, e1 ∧ e2) ∈ CBM

2 (Σ, FZ
2 ).

It is then straightforward to check that, under the boundary map ∂2, taking
into account orientations, this chain is mapped to zero. For instance, for the
component of CBM

1 (Σ, FZ
2 ) corresponding to τ1, we have

−e1 ∧ e2 + e1 ∧ e2 = 0 ∈ FZ
2 (τ1),

with the first 2-wedge corresponding to σ1 and the second to σ2. Thus the fan is
Z-balanced, and there is a fundamental class [Σ, w] ∈ HBM

2 (Σ, FR
2 ). Moreover,

it can be checked that this class generated the whole cohomology module, so
that this fan is in fact uniquely R-balanced.

The above definition, which is equivalent to the usual balancing condition
[BIMS15, Definition 5.8], is similar in flavor to the description given by [BH17,
Theorem 2.9]. We illustrate this with the following example.

Example I.3.14. In this example, we explicitly relate the above definition of
balancing to the one given in Definition I.2.8. Let (Σ, w) be a Z-balanced fan of
dimension d in the sense of Definition I.3.12. Then, for each β ∈ Σd−1, we pick
a generator Λβ ∈ LZ(β) respecting the orientation. Now for each α ∈ Σd with
β ≺ α, the vector vα/β from Definition I.2.1 is such that Λα = Λβ ∧ vα/β .

Looking at the β-component of ∂ : CBM
d (Σ, FZ

d ) → CBM
d−1 (Σ, FZ

d ), we have

∂((w(α)Λα))β =
∑
β≺α

w(α)Λα = Λβ ∧
∑
β≺α

w(α)vα/β .
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Therefore, the chain Ch(Σ, w) is closed if and only if each of the faces β are
balanced in the sense of Definition I.2.8. Thus the definitions are equivalent.

Proposition I.3.15. Let (Σ, w) be an R-balanced fan and γ ∈ Σ a face. Then
(γ⪰, w) is R-balanced, where w is understood to be the weight function induced
on γ⪰ by w.

Proof. By Proposition I.3.10, we have that HBM
d (γ⪰, FR

d ) can be viewed as the
kernel of the map ⊕

α∈Σd

α≻γ

FR
d (α)

∂γ
d−−→

⊕
β∈Σd−1

β≻γ

FR
d (β).

Moreover, the class
Ch(γ⪰, w) = (w(α)Λα)α∈Σd

α≻γ

is a cycle since Ch(Σ, w) is a cycle in CBM
d (Σ, FR

d ). Thus (γ⪰, w) is R-balanced
and we have a fundamental class [γ⪰, w] ∈ HBM

d (γ⪰, FR
d ). ■

I.3.3 Tropical cap product

There is a cap product relating Hq(Σ, Fp
R) to HBM

d−q (Σ, FR
d−p), which will be at

the core of tropical Poincaré duality. We extend the version given in [JRS18,
Definition 4.10] for R = Z to arbitrary commutative rings R, using the contraction
map from multilinear algebra for a general ring R, as developed in [Bou98, Section
III.11].

Definition I.3.16 ([Bou98, Section III.11.9]). Let MR be a rank d free R-module,
M∗

R the dual module, and 0 ≤ p1 ≤ p2 ≤ d. The interior product or contraction
defined by y = y1 ∧ · · · ∧ yp2 ∈

∧p2 MR is the map

⌟ y :
p1∧

M∗
R →

p2−p1∧
MR,

which is defined on x = x1 ∧ · · · ∧ xp ∈
∧p1 M∗

R to be

x ⌟ y = (−1)p1(p1−1)/2
∑

a

sign(a)
(

p1∏
i=1

xi(ya(i))
)

ya(p+1) ∧ · · · ∧ ya(d),

where the sum is taken over all permutations a ∈ Sd which are increasing on
1, . . . , p and p + 1, . . . , d, and is extended linearly.

Remark I.3.17. In [Bou98, Section III.11.10], an explicit formula for this
contraction map is given in terms of bases. Letting e1, . . . , em be a basis of MR,
the elements eI := ei1 ∧ · · · ∧ eip2

∈
∧p2 MR, for all I = {i1 < · · · < ip2} ⊆ [m]

ordered strictly increasing subsets of size p, form a basis of
∧p2 MR. Letting

f1, . . . , fm be the dual basis to the ei for M∗
R, the elements fJ , for all

38



Tropical geometry of fans

J = {j1 < · · · < jp1} ⊆ [m], form a basis of
∧p1 M∗

R. Then the contraction map
defined by eJ is given by{

fK ⌟ eJ = 0 if K ̸⊂ J ,
fK ⌟ eJ = (−1)v+p1(p1−1)/2 eJ∖K if K ⊆ J and p1 = |K|,

where v is the number of ordered pairs (λ, µ) ∈ K × (J ∖ K) such that λ > µ.

A proof that these contraction maps are the same as the formulation in terms
of compositions given in [Aks19; AP21] follows from the arguments given in
[Aks19, Lemma 4.1.4].

Definition I.3.18. For each facet α ∈ Σd of a d-dimensional R-balanced fan Σ,
we have chosen a generator Λα ∈ FR

d (α) =
∧d

LR(α) ∼= R by Remark I.3.4,
and a weight w(α) ∈ R which is not a zero-divisor. The contraction defined by
w(α)Λα is the map

⌟w(α)Λα :
p∧

LR(α)∗ →
d−p∧

LR(α).

Since w(α) is not a zero-divisor, Remark I.3.17 shows that this map is injective.
It is an isomorphism if and only if w(α) is a unit.

Definition I.3.19. Let the weighted fan (Σ, w) be an R-balanced fan of dimension
d. The cap product ⌢ Ch(Σ, w) with the fundamental chain of Σ is the map
given by:

⌢ Ch(Σ, w) : Cq(Σ, Fp
R) → CBM

d−q (Σ, FR
d−p)

(uγ)γ∈Σq 7→

 ∑
α∈Σd

γ,τ⪯α

w(α)ια,τ (ργ,α(uγ) ⌟Λα)


τ∈Σd−q

where Λα is as in Remark I.3.4.

Remark I.3.20. For any chain σ ∈ CBM
q (Σ, FR

p ), a cap product ⌢ σ can be
similarly defined. It is noted in [JRS18, p. 13] that the Leibniz formula holds
for these cap product, such that ∂(α ⌢ σ) = (−1)q+1(d(α) ⌢ σ − α ⌢ ∂(σ)).
In the case where R = R, the Leibniz formula also follows from [JSS19, Remark
2.2, Definition 4.11]. Therefore the above defined map descends to tropical
(co)homology, and we have the cap product with the fundamental class ⌢ [Σ, w]

⌢ [Σ, w] : Hq(Σ, Fp
R) → HBM

d−q (Σ, FR
d−p).

Example I.3.21. In Example I.3.14, we computed the fundamental class of the
fan Σ from Example I.2.4, given the all-one weight function w. We will now
compute some examples of the cap product. Let e1, e2 ∈ N ∼= Z2 be the standard
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I. Tropical Poincaré duality spaces

basis for the underlying lattice, and e∗
1, e∗

2 the dual basis for the dual lattice N∗.
Then

H0(Σ, F0
Z) = F0

Z(v) = Z,

H0(Σ, F1
Z) = F1

Z(v) = ⟨e∗
1, e∗

2⟩Z,

H0(Σ, F2
Z) = F2

Z(v) = ⟨e∗
1 ∧ e∗

2⟩Z.

Moreover, all other cohomology groups are zero, by Proposition I.3.7. Next, the
Borel–Moore chain complexes are given by

CBM
• (Σ, FZ

0 ) : 0 → Z3 → Z3 → Z → 0,

CBM
• (Σ, FZ

1 ) : 0 →
3⊕

i=1

FZ
1 (σi) →

3⊕
j=1

FZ
1 (τj) → FZ

1 (v) → 0,

CBM
• (Σ, FZ

2 ) : 0 →
3⊕

i=1

FZ
2 (σi) →

3⊕
j=1

FZ
2 (τj) → FZ

2 (v) → 0.

We now compute HBM
2 (Σ, FZ

1 ) as an example. We have that FZ
1 (τj) = ⟨e1, e2⟩Z

for each j, and FZ
1 (σi) = ⟨e1, e2⟩Z for each i. Taking the direct sum of these bases

in
⊕3

i=1 FZ
1 (σi), and respecting the orientations, we may express the differential

∂2 :
⊕3

i=1 FZ
1 (σi) →

⊕3
j=1 FZ

1 (τj) in coordinates as:

(α1, β1, α2, β2, α3, β3) 7→ (−α1 + α2, −β1 + β2, α1 − α3,

β1 − β3, −α2 + α3, −β2 + β3),

with αi and βi corresponding respectively to e1 and e2 for σi. We compute a
basis for the kernel of this map, i.e. a basis for HBM

2 (Σ, FZ
1 ) to be:

HBM
2 (Σ, FZ

1 ) = ⟨(1, 0, 1, 0, 1, 0), (0, 1, 0, 1, 0, 1)⟩Z ⊂ CBM
2 (Σ, FZ

1 )

Similar computations show that the remaining Borel–Moore homology groups
are given by:

HBM
0 (Σ, FZ

0 ) = 0 HBM
1 (Σ, FZ

0 ) = 0 HBM
2 (Σ, FZ

0 ) ∼= Z
HBM

0 (Σ, FZ
1 ) = 0 HBM

1 (Σ, FZ
1 ) = 0 HBM

2 (Σ, FZ
1 ) ∼= Z2

HBM
0 (Σ, FZ

1 ) = 0 HBM
1 (Σ, FZ

1 ) = 0 HBM
2 (Σ, FZ

2 ) = ⟨[Σ, w]⟩ ∼= Z.

Finally, we now compute an example for the cap product map, in particular
⌢ [Σ, w] : H0(Σ, F1

Z) → HBM
2 (Σ, FZ

1 ). Working from the definition, we have
that

e∗
1 7→ (e∗

1⌟Λσ1 , e∗
1⌟Λσ2 , e∗

1⌟Λσ3) ∈
3⊕

i=1

FZ
1 (σi).

Expanding this using the (αi, βi) basis from above, these contractions are such
that e∗

1 7→ (1, 0, 1, 0, 1, 0), and one can similarly check that e∗
2 7→ (0, 1, 0, 1, 0, 1).

This shows that ⌢ [Σ, w] is in this case an isomorphim.

40
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Proposition I.3.22. Let (Σ, w) be an R-balanced fan of dimension d. The cap
product with the fundamental class ⌢ [Σ, w] in tropical cohomology

⌢ [Σ, w] : Hq(Σ, Fp
R) → HBM

d−q (Σ, FR
d−p)

is the 0-map for q ̸= 0.

Proof. By Proposition I.3.7, we have that Hq(Σ, FR
p ) = 0 for q ̸= 0, hence this

cap product is only non-trivial when q ̸= 0, ■

The above proposition shows that in the fan-case, the only interesting
cap products are of the form ⌢ [Σ, w] : H0(Σ, Fp

R) → HBM
d (Σ, FR

d−p), for
p = 0, . . . , d. Moreover, in Proposition I.3.23 below, we show that these are
injective for any commutative ring R. In the case where R = R, this was shown
in [Aks19, Theorem 4.3.1], and for R = Z, it is stated in [AP21, Section 3.2.2].

Proposition I.3.23. For an R-balanced fan (Σ, w) of dimension d, the map

⌢ [Σ, w] : H0(Σ, Fp
R) → HBM

d (Σ, FR
d−p)

is injective.

Proof. We have that HBM
d (Σ, FR

d−p) = ker(∂d), and H0(Σ, Fp
R) = Fp

R(v), so
that ⌢ [Σ, w] is exactly

⌢ Ch(Σ, w) : Fp
R(v) →

⊕
α∈Σd

FR
d−p(α)

u 7→ (ρv,α(u) ⌟w(α)Λα)α∈Σd

where the image lies in HBM
d (Σ, FR

d−p) ⊆
⊕

α∈Σd FR
d−p(α). This is the

composition of the map ⊕αρv,α : Fp
R(v) → ⊕α∈ΣdFp

R(α), which is injective, since
it is dual to the surjection ⊕α∈ΣdFR

p (α) → FR
p (v), and the direct sum of the

contractions ⊕α∈Σd ⌟w(α)Λα, which are injective (Definition I.3.18). Thus this
cap product is the composition of injective maps and is therefore injective. ■

Proposition I.3.24. Let (Σ, w) be an R-balanced fan and γ ∈ Σ a face. Then the
cap product map on the star fan

⌢ [γ⪰, w] : H0(γ⪰, Fp
R) → HBM

d (γ⪰, FR
d−p)

is given by
u 7→ (u ⌟w(α)Λα)α∈Σd

α≻γ

,

where we identify H0(γ⪰, Fp
R) ∼= FR

p (γ), and HBM
d (γ⪰, FR

d−p) as the kernel of
the first map in the complex from Proposition I.3.10.
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I. Tropical Poincaré duality spaces

Proof. The identifications are justified by Proposition I.3.10, and the existence
of this fundamental class by Proposition I.3.15. It remains to show that the
stated formula corresponds to the cap product.

Consider a subdivision making γ⪰ a pointed fan. Each d-cell α̃ of the
subdivision maps to a d-cell α ≻ γ of Σ, similarly to the proof of Proposition I.3.10.
The formula then follows from the induced map in homology. ■

I.4 Tropical Poincaré duality

In Section I.4.1, we define TPD over a ring R, and give an example of a non-
matroidal fan satisfying the duality. In Section I.4.2, we give some necessary
conditions for the duality to hold, along with a characterization by an Euler
characteristic condition. Finally, in Section I.4.3, we turn to the problem of
determining which fans are TPD spaces. We classify all the one-dimensional
fans satisfying TPD over a ring R and study tropical fan hypersurfaces in Rn

satisfying TPD. This forms a first step towards answering I.1.1.

I.4.1 Definition and examples

In this subsection, we define what it means for a fan to satisfy TPD over a
commutative ring R. When R = Z, this is the definition from [JRS18, Definition
5.2], and when R = R, our definition can be shown to be equivalent to [JSS19,
Definition 4.12].

Definition I.4.1. We say that an R-balanced rational polyhedral fan Σ of
dimension d with weights w satisfies tropical Poincaré duality over R if the
cap product with the fundamental class

⌢ [Σ, w] : Hq(Σ, Fp
R) → HBM

d−q (Σ, FR
d−p)

is an isomorphism for all p, q = 0, . . . , d.

Example I.4.2. Returning again to Example I.2.4, one can verify that all the
possible cap products are isomorphisms, as we did explicitly in Example I.3.21 for
the cap product ⌢ [Σ, w] : H0(Σ, F1

Z) → HBM
2 (Σ, FZ

1 ), so that this fan satisfies
tropical Poincaré duality over Z.

Example I.4.3. Similarly, explicit computations can be carried out for Exam-
ple I.2.3. Comparing back to Example I.3.8, we have that dimZ HBM

1 (Σ, FR
1 ) = 2

and dimZ HBM
1 (Σ, FZ

0 ) = 3, while dimZ H0(Σ, FR
1 ) = 2 and dimZ H0(Σ, FR

0 ) =
1.

Thus the cap product maps

⌢ [Σ, w] : H0(Σ, F0
Z) → HBM

1 (Σ, FZ
1 ), and

⌢ [Σ, w] : H0(Σ, F1
Z) → HBM

1 (Σ, FZ
0 )

are not isomorphisms, and the fan does not satisfy tropical Poincaré duality over
Z.
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f1 f2 f3 f4 −f4 −f2 −f3

e1 e2 e3 e4 −e2 −e3 −e4

Figure I.7: The graph of cones for Example I.4.4.

As mentioned in the introduction, the Bergman fans of matroids satisfy TPD
over R and Z [JRS18; JSS19], however these are not the only such fans, as can
be seen from the next example.

Example I.4.4. Let f1 := (0, 1, 1, 1), f2 := (1, 0, −1, 1), f3 := (1, 1, 0, −1) and
f4 := (1, −1, 1, 0) be vectors in R4 and let e1, e2, e3 and e4 be the standard basis.
Consider the fan generated by the cones of vertices connected by an edge in
Figure I.7, so that for instance the cone of e1 and f2 is included. This fan was
used in [BH17] to construct a counter-example to the strongly positive Hodge
conjecture. It is not matroidal, since it does not satisfy the Hard Lefschetz
property of [AHK18].

We compute its cellular tropical homology and cohomology over Q using the
cellular sheaves package [KSW17] for [polymake], we have:

H0(Σ, F0
Q) ∼= Q

H0(Σ, F1
Q) ∼= Q4

H0(Σ, F2
Q) ∼= Q5

and
HBM

2 (Σ, FQ
2 ) ∼= Q

HBM
2 (Σ, FQ

1 ) ∼= Q4

HBM
2 (Σ, FQ

0 ) ∼= Q5

with all other groups being zero. By Proposition I.3.23, the cap product is
injective, and since the dimensions agree, the cap products are isomorphisms
when they are nonzero. Hence the fan satisfies TPD over Q, where the weights for
the fundamental class are chosen so as to form a generator of HBM

2 (Σ, FQ
2 ) = Q.

I.4.2 Necessary conditions for tropical Poincaré duality

We now turn to giving some necessary conditions for TPD to hold.
First, in light of Proposition I.3.7, the Borel–Moore homology of fans satisfying

TPD is concentrated in degree d. Indeed, by Proposition I.3.7, Hq(Σ, Fp
R) = 0

for q ̸= 0, hence the isomorphism ⌢ [Σ, w] : Hq(Σ, Fp
R) ∼= HBM

d−q (Σ, FR
d−p) gives

HBM
q (Σ, FR

d−p) = 0 for q ̸= d.
Note also that, for (Σ, w) be an R-balanced fan satisfying TPD over R, Σ

must be uniquely R-balanced by w. This is because the cap product maps 1 ∈
R ∼= H0(Σ, F0

R) (see Proposition I.3.7) to 1 ⌢ [Σ, w] = [Σ, w] ∈ HBM
d (Σ, FR

d ),
which must be a generator. Then by Definition I.3.12, the fan Σ is uniquely
R-balanced.
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Example I.4.5. For any ring R, the fan in Figure I.1 is R-balanced, but not
uniquely R-balanced by Example I.3.8, hence it cannot satisfy TPD over R.

Now, assuming that we are working over a field k, and that the Borel–Moore
homology of the fan vanishes in an appropriate way, we can determine that the
fan satisfies TPD through an Euler characteristic argument.

Proposition I.4.6. Let k be a field, and (Σ, w) be a k-balanced fan of dimension
d. Suppose HBM

q (Σ, Fk

p ) = 0 for q ̸= d. Then, for a given p, the cap product

⌢ [Σ, w] : Hq(Σ, Fp
k

) → HBM
d−q (Σ, Fk

d−p)

is an isomorphism for all q if and only if

(−1)dχ(CBM
• (Σ, Fk

d−p)) = dimk Fp
k

(v). (I.1)

Moreover, (Σ, w) satisfies TPD over k if and only if Equation (I.1) holds for all
p.

Proof. Since the only compact cell in Σ is the vertex v, we have

Hq(Σ, Fp
k

) =
{

Fp
k

(v) if q = 0,
0 otherwise.

By the vanishing condition on tropical Borel–Moore homology, the cap product
⌢ [Σ, w] : Hq(Σ, Fp

k
) → HBM

d−q (Σ, Fk

d−p) is then immediately an isomorphism for
q ̸= 0, and

χ(CBM
• (Σ, Fk

d−p)) = χ(HBM
• (Σ, Fk

d−p)) = (−1)d dimk HBM
d (Σ, Fk

d−p). (I.2)

Since the cap product is injective by Proposition I.3.23 and we are working over
a field, the maps

⌢ [Σ, w] : H0(Σ, Fp
k

) → HBM
d (Σ, Fk

d−p)

are isomorphisms if and only if dimk H0(Σ, Fp
k
) = dimk Fp

k
(v) is equal to

dimk HBM
d (Σ, Fk

d−p). By Equation (I.2), this is exactly the claimed result. ■

I.4.3 Dimension one and codimension one

We completely classify rational polyhedral fans of dimension 1 satisfying TPD
over an arbitrary commutative ring. We begin with a utility lemma:

Lemma I.4.7. Let R be a commutative ring, and (Σ, w) an R-balanced fan of
dimension one. Then we have HBM

0 (Σ, FR
0 ) = 0 and HBM

0 (Σ, FR
1 ) = 0.

Proof. Let v ∈ Σ be the vertex of the fan. By Definition I.3.6, the tropical
Borel–Moore cochain complexes are:

CBM
• (Σ, FR

0 ) :
⊕
ϵ∈Σ1

R
∂0

1−→ R → 0, and
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CBM
• (Σ, FR

1 ) :
⊕
ϵ∈Σ1

FR
1 (ϵ) ∂1

1−→ FR
1 (v) → 0.

Here ∂0
1 is the map given by the matrix (1 1 . . . 1). It is surjective and thus

HBM
0 (Σ, FR

0 ) = 0. Similarly, FR
1 (v) =

∑
ϵ∈Σ1 LR(ϵ) =

∑
ϵ∈Σ1 FR

1 (ϵ), thus ∂1
1 is

surjective, hence HBM
0 (Σ, FR

1 ) = 0. ■

Theorem I.4.8. Let R be a commutative ring, and (Σ, w) an R-balanced fan of
dimension one. Then (Σ, w) satisfies tropical Poincaré duality over R if and
only if it is uniquely R-balanced and all the weights are units in R.

Proof. We need to show that all four of the following cap products

1. ⌢ [Σ, w] : H1(Σ, F1
R) → HBM

0 (Σ, FR
0 ),

2. ⌢ [Σ, w] : H1(Σ, F0
R) → HBM

0 (Σ, FR
1 ),

3. ⌢ [Σ, w] : H0(Σ, F0
R) → HBM

1 (Σ, FR
1 ),

4. ⌢ [Σ, w] : H0(Σ, F1
R) → HBM

1 (Σ, FR
0 ),

are isomorphisms if and only if (Σ, w) is uniquely R-balanced and all the weights
are units in R. We will show this in three parts:

(a) First, we show that the maps (1) and (2) are trivial maps between zero-
modules.

(b) Then we show that (3) being an isomorphism is the definition of being
uniquely R-balanced.

(c) Finally, we show that (4) is an isomorphism if and only if (Σ, w) is uniquely
R-balanced, with the added condition that all the weights are units in R.

In total, this will then show that (Σ, w) satisfies tropical Poincaré duality over
R if and only if it is uniquely R-balanced and all the weights are units in R.

Beginning with (a), by Lemma I.4.7 and Proposition I.3.7, all involved
modules are zero. Moreover the cap product map is zero by Proposition I.3.22,
hence the maps (1) and (2) are trivially isomorphisms.

Next for (b), the map ⌢ [Σ, w] : H0(Σ, F0
R) → HBM

1 (Σ, FR
1 ) is given by

sending a scalar α ∈ H0(Σ, F0
R) ∼= R to α ⌢ [Σ, w]. The 0-contraction of a

scalar is multiplication by this scalar, so that α ⌢ [Σ, w] = α · [Σ, w]. It is
therefore an isomorphism if and only if ⟨[Σ, w]⟩ generates HBM

1 (Σ, FR
1 ), which

is the definition of uniquely R-balanced (Definition I.3.12).
Finally, we turn to (c). We begin with some notation. Let v be the vertex of

Σ and number the one-dimensional rays as ϵ1, . . . , ϵm, with weights wi = w(ϵi).
The Borel–Moore cochain group is CBM

1 (Σ, FR
0 ) = ⊕m

i=1R, which has a basis
x1, . . . , xm, with xi corresponding to ϵi. The elements xi − xm ∈ CBM

1 (Σ, FR
0 ),

for i = 1, . . . , m − 1 form a basis for HBM
1 (Σ, FR

0 ) = ker(1 1 . . . 1). For each
ϵi, we select the generator Λi ∈ LR(ϵi) compatible with the orientation of ϵi,
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and let Θi := ιϵi,v(Λi) be its image under the inclusion ιϵi,v : FR
1 (ϵi) → FR

1 (v).
Thus the fundamental class [Σ, w] ∈ HBM

1 (Σ, F1
R) is explicitly the element

(wiΛi)m
i=1 ∈ HBM

1 (Σ, FR
1 ) = ker((ιϵi,v)m

i=1) ⊂ CBM
1 (Σ, FR

1 ). The cap product
map ⌢ [Σ, w] : H0(Σ, F1

R) → HBM
1 (Σ, FR

0 ) takes a covector ϕ ∈ H0(Σ, F1
R) =

F1
R(v) to the element

(wiϕ(Θi))m
i=1 ∈ HBM

1 (Σ, FR
0 ).

Now, suppose all the weights wi are units in R and (Σ, w) is uniquely R-
balanced. Then the elements wiΘi, for i = 1, . . . , m − 1, form a basis for
FR

1 (v), with the corresponding dual basis w−1
i Θ∗

i for F1
R(v). Then, for each

j = 1, . . . , m − 1,

w−1
j Θ∗

j ⌢ [Σ, w] = (wiw
−1
j Θ∗

j (Θi))m
i=1 = (0, . . . , 0, 1, 0, . . . , wmw−1

j Θ∗
j (Θm)),

where the only two non-zero entries are in the j-th and m-th positions. Since
this is a cycle in CBM

1 (Σ, FR
0 ), we must have 1 + wmw−1

j Θ∗
j (Θm) = 0, so that

w−1
j Θ∗

j ⌢ [Σ, w] = xi − xm.

Thus the images of the basis elements w−1
j Θ∗

j of FR
1 (v) form a basis of

HBM
1 (Σ, FR

0 ), hence ⌢ [Σ, w] is an isomorphism.
For the converse direction, we show that if either the weights are non-units or

the fan is not uniquely R-balanced, then the cap product is not an isomorphism.
First, suppose some weight wk is not a unit in R. Then for any ϕ ∈

H0(Σ, F1
R) = F1

R(v), the k-th component of ϕ ⌢ [Σ, w] is contained in the ideal
⟨wk⟩ ⊂ R, which does not contain 1. Hence the element xk −xm of HBM

1 (Σ, FR
0 )

cannot be in the image of ⌢ [Σ, w], which is therefore not surjective and hence
not an isomorphism.

Finally, suppose that Σ is not uniquely R-balanced. Since HBM
1 (Σ, FR

0 ) is
free of rank m − 1, we may assume that F1

R(v) is as well, otherwise there cannot
be an isomorphism. Since Σ is not uniquely R-balanced, rankR HBM

1 (Σ, FR
1 ) > 1,

so that by working with the Euler characteristics, we must have rankR FR
1 (v) <

m − 1. Dualizing, we obtain that rankR F1
R(v) < m − 1 = rankR HBM

1 (Σ, FR
0 )

and so the cap product cannot be an isomorphism. ■

Corollary I.4.9. Let k be a field, (Σ, w) a k-balanced fan of dimension one. Then
(Σ, w) satisfies TPD over k if and only if it is uniquely k-balanced.

Proof. By Theorem I.4.8, (Σ, w) satisfies TPD if and only if it is uniquely
k-balanced, and all the weights are units in k. The weights are non-zero by
Definition I.3.11, hence must be units since k is a field. ■

Example I.4.10. Let Σ ⊂ Z3 be the 1-dimensional fan with a vertex at
the origin, and the four cones σ1, σ2, σ3 and σ4 generated by the vectors
ν1 = (1, 0, 2), ν2 = (−1, 0, 0), ν3 = (0, −1, 0), ν4 = (0, 1, −2) respectively. This
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is a balanced fan with the constant unit weight function w(σi) = 1. The
Borel–Moore chain complex CBM

• (Σ, FZ
1 ) can be written as

0 ⟨Λ1⟩Z ⊕ ⟨Λ2⟩Z ⊕ ⟨Λ3⟩Z ⊕ ⟨Λ4⟩Z FZ
1 (v) 0

(ισi,v)

Since ισi,v(Λi) = νi, we see in fact that HBM
1 (Σ, FZ

1 ) = ⟨[Σ, w]⟩, where
[Σ, w] = (Λ1, Λ2, Λ3, Λ4). Thus (Σ, w) is also uniquely Z-balanced. Moreover,
the complex CBM

• (Σ, FZ
0 ) is

0 Z4 Z 0,
(1 1 1 1)

so that HBM
1 (Σ, FZ

0 ) ∼= Z3. We pick the basis ν1, ν2, ν3 for F1
Z(v), and balancing

gives ν4 = −ν1 − ν2 − ν3. The dual basis for F1
Z(v) is ν∗

1 , ν∗
2 , ν∗

3 . We see that

ν∗
1 ⌢ [Σ, w] = (⊕⌟Λσi

)(⊕ρv,σi
)(ν∗

1 )
= (⊕⌟Λσi

)(⊕(ν∗
1 ◦ ισi,v))

= (ν∗
1 (ισ1,v(Λ1)), ν∗

1 (ισ2,v(Λ2)), ν∗
1 (ισ3,v(Λ3)), ν∗

1 (ισ4,v(Λ4)))
= (ν∗

1 (ν1), ν∗
1 (ν2), ν∗

1 (ν3), ν∗
1 (ν4))

= (1, 0, 0, −1).

Similarly, ν∗
2 ⌢ [Σ, w] = (0, 1, 0, −1), and ν∗

3 ⌢ [Σ, w] = (0, 0, 1, −1). Since
the images of the generating set y∗

1 , y∗
2 , y∗

3 for F1
Z(v) is a generating set for

HBM
1 (Σ, FZ

0 ) ∼= Z3, the cap product is an isomorphism.

For codimension 1 fan tropical cycles in Rn, which are fan tropical
hypersurfaces, we can characterize the Newton polytopes of the hypersurfaces
having TPD. We refer to [MR18, Chap. 2] for background on tropical
hypersurfaces in Rn, which they call very affine tropical hypersurfaces.

Proposition I.4.11. Let f ∈ T[x±1
0 , . . . , x±1

d ] be a tropical Laurent polynomial
such that the very affine tropical cycle X = V (f) ⊂ Rd+1 is supported on a
pointed fan. If X satisfies TPD over a commutative ring R, then the Newton
polytope ∆(f) of f is a simplex.

Proof. By assumption, the very affine tropical cycle X is a pointed d-dimensional
rational polyhedral fan ([MR18, Cor 2.3.2]), thus Hq(X, Fp

R) = 0 for all q > 0
and all p, and the isomorphisms ⌢ [X] : Hq(X, Fp

R) → HBM
d−q (X, FR

d−p) give in
particular that HBM

d−q (X, FR
0 ) = 0 for all q > 0.

Since X is the d-skeleton of the dual fan to ∆(f) by [MR18, Thm 2.3.7,
Cor 2.3.2], dimR HBM

d (X, F0) is #Vert(∆(f)) − 1, the number of vertices of the
polytope ∆(f), minus 1.

Since X is d-dimensional, dimR H0(X, Fp
R) = dimR Fp

R(v) =
(

d+1
p

)
, thus by

Poincaré duality we have

#Vert(∆(f)) − 1 = dimR HBM
d (X, FR

0 ) = dimR H0(X, Fd
R) =

(
d + 1

d

)
= d + 1,

and so ∆(f), being (d+1)-dimensional and having d+2 vertices, is a simplex. ■
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I.5 Local tropical Poincaré duality spaces

In this section, we study I.1.2. In Section I.5.1, we prove Theorem I.5.4. This
theorem implies that TPD on faces of a fan, along with vanishing of its tropical
BM homology, gives TPD on the whole fan. A version of the proof gives a
partial classification of TPD spaces of dimension two. Using Theorem I.5.4, we
prove Theorem I.5.10 in Section I.5.2, which states that local TPD spaces are
exactly fans whose codimension one faces are local TPD spaces, and all of whose
faces have vanishing tropical BM homology. Finally, we use the dimension one
classification from Theorem I.4.8 to give a more geometric characterization of
local TPD spaces in Corollary I.5.11.

I.5.1 TPD from faces

We fix a principal ideal domain R, and we use the following shortened notation
HBM

d,d−p(Σ; R) := HBM
d (Σ, FR

d−p). We prove Theorem I.5.4 in two steps: The
first step will be to show Proposition I.5.2, which relates the cellular chain
complex C•

c (Σ, Fp
R) to a complex involving the Borel–Moore homology groups

HBM
d (γ⪰, FR

d−p) for faces γ ∈ Σ by using the cap product, which we show is
exact. We then prove the theorem by showing that TPD on the faces, along with
exactness in the mentioned complex, imply Poincaré duality for the whole fan.

Let Σ be a d-dimensional rational polyhedral fan. For each maximal
face α ∈ Σd, the constant sheaf FR

d−p(α)α⪯ gives a cochain complex
(C•

c (α⪯, FR
d−p(α)α⪯), d•

α). Taking the direct sum of these for all α ∈ Σd, we
obtain a complex

(A•, d•) := (⊕αC•
c (α⪯, FR

d−p(α)α⪯), ⊕αd•
α). (I.3)

The i-th term of this complex is given by

Ai = ⊕αCi
c(α⪯, FR

d−p(α)α⪯) = ⊕α∈Σd ⊕γ∈Σi

γ≺α

FR
d−p(α).

Rearranging terms, we may use Proposition I.3.10 to obtain an inclusion

⊕γ∈ΣiHBM
d,d−p(γ⪰; R) ⊆ Ai.

Proposition I.5.1. There is a cochain complex (⊕γ∈Σ•HBM
d,d−p(γ⪰; R), d•), which

is the restriction of the cochain complex (A•, d•) from Equation (I.3).

Proof. It suffices to show that, for each i ≥ 0,

di
(
⊕γ∈ΣiHBM

d,d−p(γ⪰; R)
)

⊆ ⊕κ∈Σi+1HBM
d,d−p(κ⪰; R).

This follows from a direct computation. ■
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Proposition I.5.2. For (Σ, w) an R-balanced fan of dimension d ≥ 2, there is a
commutative diagram

0 Fp
R(v)

⊕
τ∈Σ1

Fp
R(τ)

⊕
σ∈Σ2

Fp
R(σ) · · ·

0 HBM
d,d−p(Σ; R)

⊕
τ∈Σ1

HBM
d,d−p(τ⪰; R)

⊕
σ∈Σ2

HBM
d,d−p(σ⪰; R) · · ·

⊕αd0
α ⊕αd1

α

⌢[Σ,w]

δ0

⊕τ ⌢[τ⪰,w]

⊕αd2
α

δ1 δ2

⊕σ⌢[σ⪰,w]

(I.4)
with all the vertical maps being injective, where the upper row is given by the com-
plex (C•

c (Σ, FR
p ), δ•), and the lower row is the complex (⊕γ∈Σ•HBM

d,d−p(γ⪰; R), d•)
from Proposition I.5.1.

Proof. First, we wish to show that the following diagram is commutative:

0 Fp
R(v)

⊕
τ∈Σ1

Fp
R(τ)

⊕
σ∈Σ2

Fp
R(σ) · · ·

0
⊕

α∈Σd FR
d−p(α)

⊕
τ∈Σ1

⊕
α∈Σd

α≻τ

FR
d−p(α)

⊕
σ∈Σ2

⊕
α∈Σd

α≻σ

FR
d−p(α) · · · .

⊕αd0
α ⊕αd1

α ⊕αd2
α

⌢Ch(Σ,w)

δ0 δ1 δ2

⊕σ⌢Ch(σ⪰,w)⊕τ ⌢Ch(τ⪰,w)

The upper row is the compact support complex (C•
c (Σ, Fp

R), δ•) for the Fp
R

cohomology (see Definition I.2.13). The lower row is the complex (A•, d•) from
(I.3), where the order of indexing is changed for clarity in relation to the cap
morphism.

The first vertical map in diagram (I.4) is given by the cap product on the
chain level of (Σ, w), as in Definition I.3.19. For the r-th column, the vertical
map is given as the direct sum over all γ ∈ Σr of the maps:

⌢ Ch(γ⪰, w) : Fp
R(γ) → ⊕α∈Σd

α≻γ

FR
d−p(α)

v 7→ (vγ ⌟w(α)Λα)α∈Σd

α≻γ

.

To obtain commutativity of the described diagram, we select one square and
show commutativity there:

⊕
γ∈Σr

Fp
R(γ)

⊕
κ∈Σr+1

Fp
R(κ)

⊕
γ∈Σr

⊕
α∈Σd

α≻γ

FR
d−p(α)

⊕
κ∈Σr+1

⊕
α∈Σd

α≻κ

FR
d−p(α)⊕αdr

α

⊕γ ⌢Ch(γ⪰,w) ⊕κ⌢Ch(κ⪰,w)

δr

(I.5)
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For v = (vγ)γ∈Σr ∈
⊕

γ∈Σr Fp
R(γ), we can expand the definitions for the right

then down composition to get

((⊕κ ⌢ Ch(κ⪰, w) ◦ δr)(v) = (⊕κ ⌢ Ch(κ⪰, w))
((∑

γ≺κ O(γ, κ)vγ

)
κ∈Σr+1

)
=
(
(
∑

γ≺κ O(γ, κ)vγ) ⌟w(α)Λα

)
κ∈Σr+1

α∈Σd

α≻κ

.

For the down then right composition, we get

((⊕αdr
α) ◦ (⊕γ ⌢ Ch(γ⪰, w)))(v) = (⊕αdr

α)
(

(w(α)vγ ⌟Λα)γ∈Σr+1, α∈Σd

α≻γ

)
=
(∑

γ≺κ O(γ, κ)(vγ ⌟w(α)Λα)
)

κ∈Σr+1

α∈Σd

α≻κ

.

Comparing the two above equations, diagram (I.5) is commutative since the
contraction ⌟w(α)Λα is R-linear.

Lastly, we we wish to show injectivity of the vertical maps, when restricting to
the Borel–Moore homology groups. By Proposition I.3.24 and Proposition I.3.10,
for each κ ∈ Σ, we have that

HBM
d (κ⪰, FR

d−p) ∼= ker
(

⊕α∈Σd

α≻κ

FR
d−p(α) → ⊕β∈Σd−1

β≻κ

FR
d−p(β)

)
,

and the given formulas for the maps ⊕κ∈Σr+1 ⌢ Ch(κ⪰, w) correspond exactly
to the cap products in homology

⊕κ ⌢ [κ⪰, w] :
⊕

κ∈Σr+1

Fp
R(κ) →

⊕
κ∈Σr+1

HBM
d (κ⪰, FR

d−p).

We have the following diagram when only considering the images

0 Fp
R(v)

⊕
τ∈Σ1

Fp
R(τ)

⊕
σ∈Σ2

Fp
R(σ) · · ·

0 HBM
d,d−p(Σ; R)

⊕
τ∈Σ1

HBM
d,d−p(τ⪰; R)

⊕
σ∈Σ2

HBM
d,d−p(σ⪰; R) · · ·

⊕αd0
α ⊕αd1

α

⌢[Σ,w]

δ0

⊕τ ⌢[τ⪰,w]

⊕αd2
α

δ1 δ2

⊕σ⌢[σ⪰,w]

(I.6)
where the cochain differentials in the lower row have been restricted.

These vertical maps are the direct sum of cap products, so by Proposi-
tion I.3.23, are injective. ■

Proposition I.5.3. Let Σ be a fan of dimension d ≥ 2 such that HBM
q (γ⪰, FR

p ) =
0, for q ̸= d and all p, for each face γ ∈ Σ. Then the complex
(⊕γ∈Σ•HBM

d,d−p(γ⪰; R), d•) in Proposition I.5.1 is exact except in the rightmost
position.
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Proof. We will now construct a double complex K•,•, which corresponds to the
Cartan-Eilenberg resolution of diagram (I.4), using that these are the homology
groups of the complexes CBM

• (γ⪰, FR
d−p). Then, we will use the two spectral

sequences converging to the homology of the total complex H•(Tot(K•,•)) to
deduce that the complex is exact except in the rightmost position.

Let (K•,•, d0
∧, d0

>) be the first-quadrant double complex given by

Kr,s =
⊕

κ∈Σr

⊕
γ∈Σd−s

γ⪰κ

FR
d−p(γ),

for r ≥ 0, s ≥ 0. Since all the indices used are relating to the dimensions of
particular faces of the fan Σ, this is a first-quadrant double complex.

The vertical differential (d0
∧)r,s : Kr,s → Kr,s+1 is the direct sum over the

differentials ∂κ
• of the chain complex for tropical Borel–Moore homology on the

star κ⪰ for each face κ ∈ Σr, i.e. (d0
∧)r,s = ⊕κ∈Σr ∂κ

d−s from Proposition I.3.10.
The horizontal differential (d0

>)r,s : Kr,s → Kr+1,s is the direct sum over the
differentials d•

γ in the complex of cochains of compact support for the constant
sheaf taking value FR

d−p(γ) on the cone γ⪯, truncated in degree 1, for each face
γ ∈ Σd−s. Explicitly, (d0

>)r,s = ⊕γ∈Σd−sdr
γ , where d•

γ comes from the complex:

0 FR
d−p(γ)

⊕
τ∈Σ1

γ≻τ

FR
d−p(γ) . . .

⊕
κ∈Σs−1

γ≻κ

FR
d−p(γ) Fd−p(γ) 0,

d0
γ ds−1

γd1
γ ds−2

γ

from Proposition I.3.10.
We have that d0

∧ ◦ d0
∧ = 0 and d0

> ◦ d0
> = 0 since both are direct sums of

differentials of complexes. Moreover, we have d0
> ◦ d0

∧ = d0
∧ ◦ d0

> which can be
checked directly.

Now, since K•,• is a double complex, we can look at the two associated spectral
sequences converging to the homology of the total complex (Tot(K•,•), dT) given
by Tot(K•,•)m =

∏
r+s=m Kr,s with differential dT = d> + d∧. We refer to

[Wei94, Chapter 5.6] for details.
First, we take the spectral sequence Er, with E0 = K•,• and the first

differential d0 being the horizontal differential d0
> of K•,•, which is equivalent

to computing the homology row by row. Since the rows K•,s are the complexes⊕
γ∈Σd−s C•

c (γ⪯, F (γ)γ⪯) with F (γ) := FR
d−p(γ), observing that this is merely

the reduced F (γ)-cohomology of a polytope over which γ is a cone, gives

Hk(K•,s, d0
>) ∼= 0

for each s ̸= d. In degree d, we have Hk(K•,d, d0
>) ∼= FR

d−p(v) for k = 0 and
Hk(K•,d, d0

>) = 0 otherwise. Thus, the E1 page becomes

E1
r,s

∼=
{

FR
d−p(v) r = 0 and s = d,

0 otherwise.
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There are now no further non-zero differentials of the spectral sequence, so the
E1 page is the E∞ page. In particular, we conclude that

Hq(Tot(K•,•)•) =
{

FR
d−p(v) for q = d,

0 otherwise.
(I.7)

Next, we consider the spectral sequence Er, with E0 = K•,• and the first
differential d0 being the vertical differential d0

∧ of K•,•. Taking this differential
is therefore equivalent to computing the homology column by column. The r-th
column is the direct sum over each γ ∈ Σr of the complex

0
⊕

α∈Σd

α≻γ

FR
d−p(α)

⊕
β∈Σd−1

β≻γ

FR
d−p(β) . . .

. . .
⊕

κ∈Σl+1

κ≻γ

FR
d−p(κ) FR

d−p(γ) 0

∂γ
n

∂γ
n−1

∂γ
l+2 ∂γ

l+1

each of which has the tropical Borel–Moore homology of the star γ⪰ by
Proposition I.3.10. Since by assumption, HBM

q (γ⪰, FR
p ) = 0 for q ̸= d and

all p, for each face γ ∈ Σ, we find:

Hk(Kr,•, d•
∧) =

{
⊕κ∈Σr HBM

d (κ⪰, FR
d−p) if k = 0,

0 otherwise.

Thus the E1 page has only the bottom row:

0 HBM
d (Σ, FR

d−p)
⊕

τ∈Σ1
HBM

d (τ⪰, FR
d−p)

⊕
σ∈Σ2

HBM
d (σ⪰, FR

d−p) . . .
⊕αd0

α ⊕αd1
α ⊕αd2

α

The E2 page is then merely the homology of this complex, and since it is
concentrated in one row, this must be the E∞ page. In particular, by (I.7), the
complex only has homology in the rightmost position. ■

Theorem I.5.4. Let R be a principal ideal domain, and (Σ, w) be an R-balanced
fan of dimension d ≥ 2, with HBM

q (Σ, FR
p ) = 0 for q ̸= d, for all p. If (γ⪰, w)

satisfies TPD over R, for each γ ∈ Σ with γ⪰ ̸= Σ, then (Σ, w) satisfies TPD
over R.

Proof. By assumption HBM
q (Σ, FR

d−p) = 0 for q ̸= d, and Hq(Σ, Fp
R) = 0 for

q ̸= 0 by Remark I.2.15, for all p. Thus the cap product map

⌢ [Σ, w] : Hq(Σ, Fp
R) → HBM

d−q (Σ, FR
d−p)

is an isomorphism for all q = 1, . . . , d, for all p, and it remains to show that

⌢ [Σ, w] : H0(Σ, Fp
R) → HBM

d (Σ, FR
d−p)
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is an isomorphism for all p.
Since HBM

q (Σ, FR
d−p) = 0 for q ̸= d and (γ⪰, w) satisfies TPD over R for

each γ ∈ Σ with γ⪰ ̸= Σ gives that HBM
d−q (γ⪰, FR

d−p) = 0 for all γ ∈ Σ. Thus, by
Proposition I.5.3, the lower row in diagram (I.4) is exact in all degrees except d.

Moreover, the upper row of diagram (I.4) is the complex C•
c (Σ, Fp

R),
which can be seen to be the dual complex to CBM

• (Σ, FR
p ) by the definitions

(Definitions I.2.13, I.2.14 and I.3.1).
The complex CBM

• (Σ, FR
p ) consists only of free R-modules, since FR

p (γ) is a
sublattice of N ⊗Z R for all γ ∈ Σ, and the ring R is a principal ideal domain,
hence we may apply the Universal Coefficient Theorem for cohomology [Wei94,
Theorem 3.6.5]. Thus, for each q, we have:

0 ExtR(HBM
q−1 (Σ, FR

p ), R) Hq
c (Σ, FR

p ) HomR(HBM
q−1 (Σ, FR

p ), R) 0.

Since we assumed HBM
d−q (Σ, FR

d−p) = 0 for q ≠ 0, for all p, one has Hq
c (Σ, FR

p ) = 0
for q ̸= d, for all p. Hence the upper row of diagram (I.4) is exact except in the
last position.

The cokernel complex to the chain complex map in (I.4) gives following short
exact sequence of chain complexes:

0 → (C•
c (Σ, FR

p ), δ•) →
(
⊕γ∈Σ•HBM

d (γ⪰, FR
d−p), ⊕αd•

α

)
→ coker(⌢) → 0.

This gives a long exact sequence in homology, and since the two first chain
complexes are exact in all but the last position, so is the cokernel chain complex.
Thus we have the following exact sequence:

0 coker(⌢ [Σ, w]) coker(⊕τ ⌢ [τ⪰, w]) coker(⊕σ ⌢ [σ⪰, w]) · · ·

Since each of the stars (γ⪰, w) satisfies TPD over R, we have coker(⊕γ ⌢
[γ⪰, w]) = 0 and so exactness gives coker(⌢ [Σ, w]) = 0. Thus ⌢ [Σ, w] is both
injective by Proposition I.3.23 and surjective, hence is an isomorphism. ■

Remark I.5.5. In the proof of Theorem I.5.4, the condition that R is a PID is only
used to show that HBM

q (Σ, FR
p ) = 0 for all q ̸= d implies that Hq

c (Σ, Fp
R) = 0

for all q ̸= d. One can let R be an arbitrary commutative ring if we instead
assume this latter condition, giving another variant of the theorem.

It is not sufficient that all the star fans γ⪰ of faces γ ∈ Σ with γ ̸= v satisfy
TPD. The assumption HBM

d−q (Σ, FR
d−p) = 0 for q ̸= 0, for all p, is necessary and

not implied by TPD of the faces. This is shown by the following example, which
is also studied in [Aks19] and in [AP21, Section 11.1].

Example I.5.6. Let Σ be the fan shown in Figure I.8, where the rays are
e1, e2, −e1, −e2, −e1 + e2 + e3, −e1 + e2 − e3, e1 − e2 + e3, e1 − e2 − e3. Each
of its two-dimensional faces is maximal, so that the star at these faces is just
a two-dimensional linear space, which satisfies TPD. Moreover, each ray has
exactly three faces meeting in it, so that the stars are uniquely balanced, and
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Figure I.8: A fan whose faces excluding the vertex satisfy TPD, but does not
itself satisfy it. Figure generated using [polymake]

satisfy TPD. We could therefore expect Theorem I.5.4 to give us that the whole
fan Σ has TPD.

However, observe that dimQ FQ
2 (σ) = 1 for each σ ∈ Σ2, while dimQ FQ

2 (τ) =
2 for each τ ∈ Σ1 and dimQ FQ

2 (v) = 3. There are 12 two-dimensional faces and
8 one-dimensional faces, so that

χ(CBM
• (Σ, FQ

2 )) = 12 − 8 · 2 + 3 = −1.

Since χ(CBM
• (Σ, FQ

2 )) = χ(HBM
• (Σ, FQ

2 )), we must have that HBM
1 (Σ, FQ

2 ) ̸∼= 0.
Finally, since H1(Σ, F0

Q) = 0, the cap product ⌢ [Σ, w] : H1(Σ, F0
Q) →

HBM
1 (Σ, FQ

2 ) cannot be an isomorphism.

Proposition I.5.7. Let k be a field, and (Σ, w) a k-balanced fan of dimension 2.
Suppose HBM

q (Σ, Fk

p ) = 0 for q ̸= 2, for all p. Then Σ satisfies TPD over k if
and only if each of the stars (τ⪰, w), for τ ∈ Σ1 satisfies TPD over k.

Proof. First, we show that for each σ ∈ Σ2, the star σ⪰ satisfies TPD over k.
For each σ ∈ Σ2, we have from Proposition I.3.10 that

H0(σ⪰, Fp
k

) = Fp
k

(σ) = (
∧p

LZ(σ) ⊗Z k)∗
,

HBM
d (σ⪰, Fk

d−p) = Fk

d−p(σ) =
∧d−p

LZ(σ) ⊗Z k.

Moreover, the cap product is an injective map by Proposition I.3.23. These two
vector spaces have the same dimension, hence the cap product is an isomorphism.

Next, we consider again the sequence

0 coker(⌢ [Σ, w]) coker(⊕τ ⌢ [τ⪰, w]) coker(⊕σ ⌢ [σ⪰, w]) · · ·
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from the proof of Theorem I.5.4. Since σ⪰ satisfies TPD over k, coker(⊕σ ⌢
[σ⪰, w]) = 0, and so coker(⌢ [Σ, w]) ∼= coker(⊕τ ⌢ [τ⪰, w]). Since both these
maps are injective by Proposition I.3.23, the result follows. ■

Remark I.5.8. Theorem I.5.4 shows that under the assumption of the vanishing
of Borel–Moore homology, TPD on a fan Σ can be deduced from TPD on its
faces. In fact, it is not necessary to assume that all the faces satisfy TPD: In
general, the “vertical first” spectral sequence in Proposition I.5.3 degenerates
on page 2 when HBM

q (γ⪰, FR
p ) = 0, for q ̸= d and all p, for each face γ ∈ Σ.

However, the exactness of the lower row in diagram (I.4) in positions 0 and 1
follow from the weaker assumption that HBM

q (γ⪰, FR
p ) = 0, for q ̸= d and all p,

for each face γ ∈ Σi, with i = 0, 1. One can then show, in a restricted version
of the proof of Theorem I.5.4, that TPD for all τ ∈ Σ1 implies that Σ satisfies
TPD.

I.5.2 A characterization of local TPD spaces

We now turn to studying fans which satisfy TPD at every face. Using
Theorem I.5.4, we characterize such fans as the ones for which the condition holds
in codimension 1 along with a vanishing condition on Borel–Moore homology,
which was suggested to us by Amini and Piquerez [AP21].

Definition I.5.9. Let R be a ring, and (Σ, w) an R-balanced fan. If, for each face
γ ∈ Σ, the star fan γ⪰ satisfies tropical Poincaré duality over R, we say that Σ
is a local tropical Poincaré duality space over R.

In particular, this implies that Σ satisfies TPD over R. In the case where
R = Z or Q, being a local TPD space is equivalent to the tropical smoothness
introduced by Amini and Piquerez in [AP21]. We use a different notion of the
star of a face, but the equivalence of the definitions can be seen from [AP21,
Proposition 3.17], which in turn follows from the tropical Künneth theorem
[GS23, Theorem B].

Theorem I.5.10. Let R be a principal ideal domain, and (Σ, w) a d-dimensional
R-balanced fan. Then Σ is a local TPD space over R if and only if
HBM

q (γ⪰, FR
p ) = 0 for all γ ∈ Σ and q ≠ d, and for all faces β of codimension

1, the star fans β⪰ are TPD spaces over R.

Proof. If Σ is a local TPD space over R, each of the star fans γ⪰ for γ ∈ Σ,
in particular the codimension 1 faces are TPD spaces over R. Moreover, this
implies that the Borel–Moore homology groups HBM

q (γ⪰, FR
p ) vanish for q ̸= d

and all γ ∈ Σ.
Next, assume that the star fans β⪰ for β ∈ Σd−1 are local TPD spaces over R

and HBM
q (γ⪰, FR

p ) = 0 for all γ ∈ Σ. First, we apply Theorem I.5.4 to all faces
of codimension two µ in Σ. For a given µ ∈ Σd−2, we have HBM

q (µ⪰, FR
p ) = 0 for

all p by assumption. Moreover, each face β̃ ∈ µ⪰ is a subdivision of a face β ∈ Σ
with β ≺ µ. By assumption all these faces of Σ are TPD spaces, and therefore
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the subdivided faces β̃ of µ⪰ are as well. Hence we may apply Theorem I.5.4,
and conclude that µ⪰ is a TPD space. Thus, all of codimension 2 of Σ are TPD
spaces. Proceeding inductively, we can apply Theorem I.5.4 to all the stars γ⪰
of faces γ ∈ Σ. Thus Σ is a local TPD space. ■

Corollary I.5.11. Let (Σ, w) a d-dimensional Z-balanced fan. Then Σ is a local
TPD space over Z if and only if HBM

q (γ⪰, FZ
p ) = 0 for q ̸= d and all γ ∈ Σ, all

the weights are ±1, and for all faces β of codimension 1, the star fans β⪰ are
uniquely Z-balanced in the sense of Definition I.3.12.

Proof. For each face β of codimension 1 of Σ, observe that each face of dimension
d of the star fan β⪰ is a linear space, hence is a TPD space over Z. Furthermore,
each star fan β⪰ has a (d − 1)-dimensional lineality space, and we may write
β⪰ = Σβ ×Rd−1 for some “reduced star” Σβ of dimension 1. Since Rd−1 satisfies
TPD over Z, by [AP21, Proposition 3.18], the star fan β⪰ is a TPD space over
Z if and only if Σβ is a a TPD space over Z. By Theorem I.4.8, this is the case
if and only if Σβ is uniquely Z-balanced with ±1-weights. Therefore β⪰ is a
local TPD space over Z if and only if it is uniquely Z-balanced with ±1-weights.
Finally, the equivalence follows from comparing with Theorem I.5.10. ■

Remark I.5.12. Passing from Theorem I.5.10 to Corollary I.5.11 is mostly
dependent on the Künneth formula for the FZ

p cosheaves from [GS23]. A
generalization of the Künneth formula to FR

p for another ring R would also lead
to a generalization of Corollary I.5.11.

Theorem I.5.10 illustrates that it would be desirable to obtain a geometric
understanding of the vanishing condition for the tropical Borel–Moore homology.

Question I.5.13 (Geometry of BM homology vanishing?). Let (Σ, w) be an R-
balanced d-dimensional fan. Can the fans with HBM

q (γ⪰, FR
p ) = 0 for each face

γ ∈ Σ, q ̸= d and all p be geometrically characterized?

We note that it is not clear whether TPD of the whole fan implies local TPD.
We have not been able to construct a fan satisfying TPD such that the star of
one of its faces does not.

Question I.5.14 (Global versus Local TPD). Let (Σ, w) be an R-balanced fan
which satisfies TPD over R. Does γ⪰ also satisfy TPD over R for each γ ∈ Σ?

Even assuming that HBM
q (γ⪰, FR

p ) = 0 for q ≠ d, along with TPD on the
whole fan (Σ, w), the proof of Theorem I.5.4 does not directly imply that Σ is
a local TPD space generally. In algebraic topology, the question of going from
Poincaré duality globally on a CW complex to Poincaré duality locally has been
investigated using techniques from surgery and homotopy theory (see [Ran11]
for an overview).
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I.6 Tropical Poincaré duality for polyhedral spaces

In this section, we use the results of Section I.5 to prove that abstract tropical
cycles which have charts to local TPD spaces satisfy tropical Poincaré duality.
In [JRS18, Theorem 5.3], the Mayer–Vietoris argument that shows that tropical
manifolds satisfy tropical Poincaré duality over Z is predicated on the existence
of charts to fans of matroids, which are local TPD spaces over Z. This suggests
that the local TPD spaces characterized in Theorem I.5.10 are useful as building
blocks for general spaces satisfying TPD. We show this in Theorem I.6.5. We refer
to [JRS18] for the definitions of rational polyhedral spaces, rational polyhedral
structures, as well as the tropical cohomology and Borel–Moore homology
theories available on such spaces. Here we generalize these to take coefficients
in an arbitrary commutative ring R, as in Definition I.3.6. Moreover, one can
generalize [JRS18, Definitions 4.7-4.8] of the weight function to an arbitrary
commutative ring, as in Definition I.3.11, which gives rise to a fundamental chain
Ch(X, w) ∈ CBM

d (X, FR
d ), for d = dim X.

Definition I.6.1. A rational polyhedral space X of pure dimension d with a
rational polyhedral structure C and a weight function w is balanced if the
fundamental chain Ch(X, w) ∈ CBM

d (X, FR
d ) is closed, inducing a fundamental

class [X, w] ∈ HBM
d (X, FR

d ) in tropical Borel–Moore homology. We call the
triple (X, C, w) an abstract tropical R-cycle.

Abstract tropical R-cycles are the candidate spaces for satisfying tropical
Poincaré duality over R, slightly generalizing [JRS18, Definition 4.11].

Definition I.6.2. Let X be an abstract tropical R-cycle of dimension d. The
fundamental class [X, w] induces a cap product

⌢ [X, w] : Hq(X, Fp
R) → HBM

d−p (X, FR
d−p)

between tropical cohomology and tropical Borel–Moore homology. If these are
isomorphisms for all p and q, we say that X is a tropical Poincaré duality space
over R.

Definition I.6.3. Let (X, C, w) be an abstract tropical R-cycle over a commutative
ring R. We say that (X, C, w) is a local tropical Poincaré duality space if for each
σ ∈ C, the rational polyhedral complexes {ϕσ(τ) | τ ∈ σ⪰} are local TPD spaces
over R.

Example I.6.4. Tropical manifolds, which have charts to Bergman fans of
matroids, are examples of local TPD spaces over Z and R, see [JRS18; JSS19].

Theorem I.6.5. Let X be a local tropical Poincaré duality space over a principal
ideal domain R. Then X satisfies tropical Poincaré duality over R.

Proof. The two steps of the proof given in [JRS18, Proof of Theorem 5.3] carry
through. Since the open stars of faces satisfy TPD over R, the first step is
identical, noting that the same arguments carry through working in the category
of R-modules. The induction argument given in the second step also carries
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I. Tropical Poincaré duality spaces

through, as the same sequence of complexes can be constructed in the category
of R-modules. ■

Remark I.6.6. Note that Definition I.6.3 in the case where R = Z is equivalent
to the definition of smooth tropical variety given in [AP21, Definition 3.22], such
that the case R = Z of Theorem I.6.5 is equivalent to [AP21, Theorem 3.23].

Theorem I.6.5 justifies the naming in Definition I.6.3, generalizing the rela-
tionship between local TPD spaces and TPD spaces as defined in Definition I.5.9
and Definition I.4.1. Moreover, I.5.14 about the relationship between local TPD
and TPD are also applicable in this more general setting.

Question I.6.7 (Global versus Local TPD for abstract tropical cycles). Let
(X, C, w) be an abstract tropical R-cycle satisfying TPD over R. Does γ⪰ also
satisfy TPD over R for each γ ∈ C?
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Paper II

Cohomologically tropical varieties

Edvard Aksnes, Omid Amini, Matthieu Piquerez, Kris Shaw

II

Abstract

Given the tropicalization of a complex subvariety of the torus, we define a
morphism between the tropical cohomology and the rational cohomology
of their respective tropical compactifications. We say that the subvariety
of the torus is cohomologically tropical if this map is an isomorphism for
all closed strata of the tropical compactification.

We prove that a schön subvariety of the torus is cohomologically
tropical if and only if it is wunderschön and its tropicalization is a tropical
homology manifold. The former property means that the open strata
in the boundary of a tropical compactification are all connected and the
mixed Hodge structures on their cohomology are pure of maximum possible
weight; the latter property requires that, locally, the tropicalization verifies
tropical Poincaré duality.

We study other properties of cohomologically tropical and wunderschön
varieties, and show that in a semistable degeneration to an arrangement
of cohomologically tropical varieties, the Hodge numbers of the smooth
fibers are captured in the tropical cohomology of the tropicalization. This
extends the results of Itenberg, Katzarkov, Mikhalkin, and Zharkov.
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II. Cohomologically tropical varieties

II.1 Overview

The tropicalization process transforms algebraic varieties into piecewise poly-
hedral objects. While losing part of the geometry, some of the invariants, such
as dimension and degree, of the original variety can still be computed from
its tropicalization. For the complement of a hyperplane arrangement, Zharkov
shows that the tropical cohomology of the tropicalization computes the usual co-
homology of the variety [Zha13]. Moreover, Hacking relates the top-weight mixed
Hodge structure of a variety to the homology of its tropicalization [Hac08]. We
are interested in determining for which varieties the tropicalization remembers
the cohomology. Part of our motivation to study this question comes from the
work of Deligne [Del97] in which he gives a Hodge-theoretic characterization of
maximal degenerations of complex algebraic varieties. We are more specifically
interested in determining how tropicalization is related to maximal degenerations,
because of the recent connection to the SYZ conjecture by the work of Yang
Li [Li20].

We introduce the relevant concepts and notation before stating our results.
Let N be a lattice of rank n, M the dual lattice, and T = Spec(C[M ]) ∼= (C∗)n

the corresponding torus. We let NR and NQ denote N ⊗Z R and N ⊗Z Q,
respectively. Let X ⊆ T be a non-singular subvariety of T and denote by
X = trop(X) its tropicalization [MS15; MR18]. A unimodular fan Σ in NR
with support X gives rise to a complex toric variety CPΣ and a tropical toric
variety TPΣ. Taking the closures of X and X in CPΣ and TPΣ, respectively,
gives compactifications X and X. We note that the compactifications depend on
the choice of the fan Σ whose support is trop(X), however, we have chosen not
to indicate it in the notation for X or X. Here and elsewhere in the paper, we
use bold letters for algebraic varieties and regular letters for tropical varieties.

For a complex variety Z, we denote by H•(Z) the cohomology ring of Z
with coefficients in Q. For a tropical variety Z, the k-th tropical cohomology
group of Z can be defined as Hk(Z) :=

⊕
p+q=k Hp,q(Z), where Hp,q(Z)

is the (p, q)-th tropical cohomology group with Q-coefficients introduced in
[IKMZ19], see Section II.2.6. The tropical cohomology groups together form
a ring H•(Z) =

⊕
k

Hk(Z), the product structure being induced by the cup
product in cohomology [MZ14; GS23]. We note that the tropical cohomology
of Z depends only on Z. In particular, if Z = trop(Z), no information about Z
beyond trop(Z) goes into the recipe for computing H•(trop(Z)).

The question addressed in this paper can be informally stated as follows:
Under which conditions can the cohomology of X be related to the tropical
cohomology of trop(X)?

Let X, Σ and X be as above, with X and X the corresponding compactifi-
cations. We define τ∗ to be the ring homomorphism τ∗ : H•(X) → H•(X)
between the cohomologies of X and X, defined by composing the isomor-
phism Hk,k(X) ∼= Ak(CPΣ), proved in [AP21], with the cycle class map
Ak(CPΣ) → H2k(CPΣ) and the pullback morphism on cohomology associated
to the embedding X ↪→ CPΣ. The groups Hp,q(X) are sent to zero by τ∗ for
p ̸= q. We refer to Section II.3 for more details.

62



Overview

In the following, we will use the map τ∗ not only on X and X, but also on
some of their subvarieties: the toric varieties CPΣ and TPΣ are endowed with
natural stratifications induced by the cone structure of Σ. Each cone σ ∈ Σ
gives rise to the torus orbits Tσ and Nσ

R in CPΣ and TPΣ, respectively, with
corresponding lattice Nσ. The closures in CPΣ and TPΣ of these orbits are
denoted by CPσ

Σ and TPσ
Σ, respectively, and are isomorphic to the complex and

tropical toric varieties associated to the star fan Σσ of σ in Σ. Intersection with
these strata induce a stratification of X and X. We denote by Xσ = X ∩ Tσ

and Xσ = X ∩ Nσ
R the stratum associated to σ ∈ Σ, and by Xσ and Xσ their

closures in X and X, respectively. The stratum Xσ is a closed subvariety of
the torus Tσ and its tropicalization coincides with Xσ. Moreover, the star
fan Σσ is a unimodular fan with support Xσ. We thus obtain a morphism
H•(Xσ) → H•(Xσ) that we also denote by τ∗.

Definition II.1.1. Let X ⊆ T be a subvariety, Σ a unimodular fan with support
X = trop(X), and X and X the corresponding compactifications. We say
that X is cohomologically tropical with respect to Σ if the induced maps
τ∗ : H•(Xσ) → H•(Xσ) are isomorphisms for all σ ∈ Σ.

We show that the property of being cohomologically tropical for schön
subvarieties of tori does not depend on the chosen unimodular fan. Recall from
[Tev07; Hac08] that a subvariety X ⊆ T is schön if for some, equivalently for
any, unimodular fan Σ of support trop(X), the open strata Xσ, σ ∈ Σ, of the
corresponding compactification are all non-singular. It also implies that the
compactification X is non-singular, and that X ∖ X is a simple normal crossing
divisor.

Theorem II.4.4. Suppose that the subvariety X ⊆ T is schön and let X = trop(X)
be its tropicalization. The following are equivalent.

1. There exists a unimodular fan Σ with support X such that X is
cohomologically tropical with respect to Σ.

2. For any unimodular fan Σ with support X, X is cohomologically tropical
with respect to Σ.

Such a schön subvariety X ⊆ T will be called cohomologically tropical.
For example, the linear subspaces in CPn, restricted to the torus, form a
family of cohomologically tropical subvarieties. These very affine varieties are
complements of hyperplane arrangements, see Section II.8.2. A generalization is
given in [Sch21] in which Schock defines quasilinear subvarieties of tori as those
having a tropicalization which is tropically shellable in the language of [AP21].
He shows that these subvarieties are necessarily schön. It follows from his results
that quasilinear subvarieties of tori are cohomologically tropical.

We now introduce a class of subvarieties X ⊆ T with cohomology amenable
to a tropical description using the notion of mixed Hodge structures, see
Section II.2.4.
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Definition II.1.2. A non-singular subvariety X ⊆ T of the torus is called
wunderschön with respect to a unimodular fan Σ with support trop(X) if all the
open strata Xσ of the corresponding compactification X are non-singular and
connected, and the mixed Hodge structure on Hk(Xσ) is pure of weight 2k for
each k.

In particular, a point in the torus is wunderschön. It follows from the
preceding discussion that if X is wunderschön, it is schön. Therefore, if X is the
compactification with respect to a unimodular fan Σ, the boundary X ∖ X is a
strict normal crossing divisor.

We prove that the property of being wunderschön is independent of the fan,
and that the cohomology of a wunderschön variety is divisorial in the sense of
Section II.5.

Theorem II.4.5. Suppose that the subvariety X ⊆ T is wunderschön with respect
to some unimodular fan. Then X is wunderschön with respect to any unimodular
fan with support X = trop(X).

Theorem II.5.1. Let X ⊆ T be a wunderschön subvariety. Let X be the
compactification of X with respect to a unimodular fan Σ with support X =
trop(X). Then the cohomology of X is divisorial and generated by irreducible
components of X ∖ X.

A tropical variety X is called a tropical homology manifold if any open subset
in X verifies tropical Poincaré duality. For a tropical variety which is the support
of a tropical fan, this amounts to the property that for some, equivalently for
any, rational unimodular fan Σ of support X, the corresponding open strata Xσ

verify tropical Poincaré duality for all σ ∈ Σ. In particular this implies that,
for any unimodular fan Σ of support X, any open subset of the corresponding
tropical compactification X verifies tropical Poincaré duality.

A tropical fanfold X is called Kähler if for some, equivalently for any, quasi-
projective unimodular fan Σ with support X, and for any σ ∈ Σ, the Chow ring
A•(Σσ) verifies the Kähler package, that is, Poincaré duality, hard Lefschetz
theorem and Hodge-Riemann bilinear relations. Here, for a unimodular fan Σ,
the Chow ring A•(Σ) coincides with the Chow ring of the corresponding toric
variety CPΣ.

We have the following main theorem on characterization of cohomologically
tropical subvarieties of tori.

Theorem II.6.1. Let X ⊆ T be a schön subvariety with tropicalization X =
trop(X). Then the following statements are equivalent.

1. X is wunderschön and X is a tropical homology manifold,

2. X is cohomologically tropical.

Moreover, if any of these statements holds, then X is Kähler.

We deduce the following result from the above theorem.
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Theorem II.6.2 (Isomorphism of cohomology on open strata). Suppose that
X ⊆ T is schön and cohomologically tropical. Let Σ be any unimodular fan with
support X = trop(X). Then we obtain isomorphisms

τ∗ : Hk(Xσ) ∼−→ Hk(Xσ)

for all σ ∈ Σ and all k.

Going beyond cohomologically tropical subvarieties of tori, and following the
work of [IKMZ19], one can ask the following question. Which families Xt of
complex projective varieties over the complex disk degenerating at t = 0 have
the property that the tropical cohomology of their tropical limit captures the
Hodge numbers of a generic fiber in the family?

In Theorem II.7.1, we weaken the condition given in [IKMZ19] by showing that
it suffices to ask the open components of the central fiber to be cohomologically
tropical and schön. By Theorem II.6.1, this is equivalent to asking the maximal
dimensional strata to be wunderschön and their tropicalizations to be tropical
homology manifolds.

More precisely, let π : X → D∗ be an algebraic family of non-singular algebraic
subvarieties in CPn parameterized by a punctured disk D∗ and with fiber Xt

over t ∈ D∗. Let Z ⊆ TPn be the tropicalization of the family.
By Mumford’s proof of the semistable reduction theorem [KKMS06], we find

a triangulation of Z (possibly after a base change) such that the extended family
π : X → D is regular and the fiber over zero X0 is reduced and a simple normal
crossing divisor. Note that since the extended family is obtained by taking the
closure in a toric degeneration of CPn, each open stratum in X0 will be naturally
embedded in an algebraic torus.

We say that a tropical variety is a tropical homology manifold if all of its
local tropical fanfolds verify tropical Poincaré duality.

Theorem II.7.1. Let π : X → D∗ be an algebraic family of subvarieties in CPn

parameterized by the punctured disk and let π : X → D be a semistable extension.
If the tropicalization Z ⊆ TPn is a tropical homology manifold and all the open
strata in X0 are wunderschön, then Hp,q(Z) is isomorphic to the associated
graded piece W2p/W2p−1 of the weight filtration in the limiting mixed Hodge
structure Hp+q

lim . The odd weight graded pieces in Hp+q
lim are all vanishing.

Moreover, for t ∈ D∗, we have dim Hp,q(Xt) = dim Hp,q(Z), for all non-
negative integers p and q.

Degenerations appearing in the previous theorem are necessarily maximal in
the sense of [Del97], see Section II.8.4 for more discussion of this connection.

Theorem II.7.2. Notations as above, the family X → D∗ is maximally degenerate.

We refer to the earlier work of Gross-Siebert [GS10] on integral affine
manifolds with singularities and degenerations to arrangements of complete toric
varieties, the work of Ruddat [Rud10] on non-necessarily maximal degenerations
of Calabi-Yau varieties, and [HK12; KS12; KS16; Rud21] for other interesting
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results connecting the topology of tropicalizations to the Hodge theory of nearby
fibers.
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II.2 Preliminaries

II.2.1 Subvarieties of the torus and tropicalization

We briefly recall the tropicalization of subvarieties of tori. Let N be a lattice
of rank n, M its dual, NR = N ⊗ R, and T = TN = Spec(C[M ]) ∼= (C∗)n. Let
X be a d-dimensional subvariety of the torus T, so that X = V(I) for an ideal
I ⊆ C[M ]. The tropicalization of X can be described using initial ideals, see e.g.
[MS15, Section 3.2],

trop(X) = {w ∈ NR | inw(I) ̸= ⟨1⟩}.

A d-dimensional fan Σ is weighted if it comes equipped with a weight function
wt : Σd → Z where Σd denotes the d-dimensional cones. A tropical fan is
a weighted fan which is pure dimensional and which satisfies the balancing
condition in tropical geometry [MS15, Section 3.3]. A fanfold is a subset of NR
which is the support of a rational fan, and it is a tropical fanfold if it is the
support of a tropical fan.

The tropicalization X := trop(X) is a tropical fanfold, and any fan structure
on trop(X) is equipped with a weight function wtX induced by X. If Σ is a
rational fan in NR of support X and η is some facet of Σ, then for a generic point
w in the relative interior of η, the variety V(inw(I)) is a union of translates of
torus orbits. Then wtX(η) is equal to the number of such torus orbit translates
counted with multiplicity. This number is invariant for generic choices of points
in the relative interior of η. The tropicalization endowed with the weight function
wtX satisfies the balancing condition and thus is a tropical fanfold in NR [MS15,
Section 3.4].
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II.2.2 Tropical compactifications of complex varieties

We now briefly review the notion of tropical compactifications introduced in
[Tev07]. Let Σ be a fan in NR, and CPΣ the associated toric variety. There is
a bijection between cones in Σ and torus orbits in CPΣ. For each σ ∈ Σ, we
denote by Tσ the corresponding torus orbit. The closure Tσ is the disjoint union⊔

γ⊇σ Tγ , for cones γ ∈ Σ containing σ. For X ⊆ T a subvariety and its closure
X in CPΣ, we have X =

⊔
σ∈Σ Tσ ∩ X. We denote the stratum Tσ ∩ X by Xσ,

and its closure by Xσ. Note that, Xσ =
⊔

γ⊇σ Xγ .
For Σ a unimodular fan with support equal to X = trop(X), the closure X of

X in CPΣ is compact, giving a tropical compactification [Tev07, Proposition 2.3].
Moreover for such a Σ, the compactification X of X in CPΣ is said to be schön
if the torus action T × X → CPΣ is non-singular and surjective, in which case
X is non-singular, and the boundary D := X ∖ X is a simple normal crossing
divisor [Tev07, Theorem 1.2]. The compactification X is schön if and only if
Xσ is non-singular for each σ ∈ Σ [Hac08, Lemma 2.7]. If X admits a schön
compactification, then any unimodular fan with support equal to X will provide
a schön compactification [LQ11, Theorem 1.5], and in this case we will say that
X is schön.

Example II.2.1. For f =
∑

I∈∆(f) aIxI ∈ C[x±
1 , . . . , x±

n ] a Laurent polynomial,
it is pointed out in [Tev07, p. 1088] that the very affine hypersurface X = V (f)
being schön is equivalent to the condition that f is non-degenerate (with respect
to its Newton Polytope), a concept studied in [Var76a; Var76b] and [Kou76]. For
each face γ ∈ ∆(f) of the Newton Polytope of f , one defines fγ =

∑
I∈γ aIxI .

Then f is non-degenerate if, for all γ ∈ ∆(f), the polynomials

x1
∂fγ

∂x1
, . . . , xn

∂fγ

∂xn

share no common zero in (C∗)n. This implies that X = V (f) is schön by for
instance [Var76b, Lemma 10.3].

II.2.3 Canonical compactifications of tropical varieties

Let Σ be a rational fan in NR. The dimension of a cone σ will be denoted by
|σ|, and we denote by Σk the set of cones of Σ of dimension k. The unique cone
of dimension 0 is denoted 0. Let γ, δ be two faces of Σ. We write γ ≼ δ if γ is a
face of δ. For δ ∈ Σ a cone, the saturated sublattice parallel to δ is denoted Nδ,
and the quotient lattice N/Nδ is denoted Nδ, with quotient maps πδ : N → Nδ

and πδ : NR → Nδ
R. Furthermore, the star at δ is the fan Σδ in Nδ

R whose cones
are given by {πδ(σ) | δ ≼ σ}.

We briefly review the construction of tropical toric varieties, referring to
[MS15, Chapter 6.2] for a detailed construction. Let T = R ∪ {+∞} denote the
tropical semi-field. Denote by σ∨ the semigroup of element of MR which are
nonnegative on σ. For each σ ∈ Σ, one defines U trop

σ := Homsemigroup(σ∨ ∩M,T),
which can be identified with the set

⊔
δ≼σ Nδ

R. We equip U trop
σ with the
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subset topology of the product topology on the infinite product Tσ∨∩M . For
σ unimodular, U trop

σ is isomorphic to Rn−|σ| × T|σ|. For δ ≼ σ, the inclusion
identifies U trop

δ as an open subset of U trop
σ . The tropical toric variety TPΣ

associated to Σ is the space given by gluing the U trop
σ along common faces, with

underlying set
⊔

σ∈Σ Nσ
R .

Let Σ be a fan with support X. The canonical compactification X of X
relative to the fan Σ is the closure of X as a subset of its tropical toric variety
TPΣ. Furthermore, X has a cellular structure, which we denote Σ. See [AP21,
Section 2] for details. For any cone σ ∈ Σ, we denote by Xσ the fanfold associated
to Σσ. The canonical compactification Xσ of Xσ is canonically isomorphic to the
closure of Xσ when considered as a subset in Nσ

R ⊆ TPΣ, and we will denote this
compactified fanfold by Xσ, when Σ is understood from the context. Moreover,
there is an inclusion of canonical compactifications i : Xσ ↪→ Xδ for δ ≼ σ.

When X = trop(X) the tropical canonical compactification X relative to any
fan Σ with support X is the same as the extended tropicalization of the closure
X ⊆ CPΣ in the sense of [Kaj08] and [Pay09, Section 3].

II.2.4 Mixed Hodge structures

Keeping the notation from Section II.2.2, let X ⊆ T be a non-singular subvariety,
and Σ a unimodular fan supported on the tropicalization X = Trop(X), so
that we obtain a tropical compactification X of X. Moreover suppose that
the boundary D := X ∖ X is a simple normal crossing divisor. We have that
D =

⋃
ζ∈Σ1

Xζ .
By [Del71, Section 3], the logarithmic de Rham complex Ω•

X(log D) induces
an isomorphism

Hk(X;Q) ∼= Hk(X; Ω•
X(log D)),

for each k. Moreover, there is a weight filtration W• on the logarithmic de Rham
complex, which gives a mixed Hodge structure on Hk(X). This is given by the
Deligne weight spectral sequence

E−p,q
1 = Hq−2p(

⊔
σ∈Σp

Xσ) =⇒ Hq−p(X),

which degenerates on the E2-page. Below, we display the rows E•,2k+1
1 and E•,2k

1 ,
where the rightmost elements are in position (0, 2k + 1) and (0, 2k), respectively.⊕

σ∈Σk

H1(Xσ)
⊕

δ∈Σk−1

H3(Xδ) · · ·
⊕

ζ∈Σ1

H2k−1(Xζ) H2k+1(X)

⊕
σ∈Σk

H0(Xσ)
⊕

δ∈Σk−1

H2(Xδ) · · ·
⊕

ζ∈Σ1

H2k−2(Xζ) H2k(X).

All the differentials are sums of Gysin homomorphisms with appropriate
signs. Recall that, given a unimodular fan Σ, and a pair of faces σ, δ ∈ Σ
such that δ is a codimension one face of σ, the inclusion map i : Xσ → Xδ
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induces a restriction map in cohomology i∗ : H•(Xδ) → H•(Xσ), with dual
map i∗ : H•(Xσ)∗ → H•(Xδ)∗. Applying the Poincaré duality for both Xσ and
Xδ gives a map PD−1

Xδ
◦ i∗ ◦ PDXσ : H•(Xσ) → H•+2(Xδ), called the Gysin

homomorphism and denoted Gysσ≻δ.
Since the Deligne spectral sequence degenerates at the E2 page, the

cohomology of the rows E•,2k+1
1 and E•,2k

1 yields the following associated graded
elements

GrW
2k+1(Hk+1) GrW

2k+1(Hk+2) · · · GrW
2k+1(H2k) GrW

2k+1(H2k+1)

GrW
2k(Hk) GrW

2k(Hk+1) · · · GrW
2k(H2k−1) GrW

2k(H2k),
(II.1)

where Hk := Hk(X) and GrW
l (Hk) denotes the weight l part of the mixed Hodge

structure on Hk.
Recall that a mixed Hodge structure H is pure of weight n if GrW

i (H) = 0
for i ≠ n. A mixed Hodge structure H is Hodge-Tate if GrW

k (H) is of type (l, l)
if k = 2l and 0 for k odd, see, e.g., [Del97, p. 689].

II.2.5 Wunderschön varieties

We now consider wunderschön varieties X ⊆ T as introduced in Definition II.1.2.
As we noted previously, wunderschön varieties are schön. In addition, we have
the following.

Proposition II.2.2. If a non-singular subvariety X ⊆ T is wunderschön with
respect to Σ, then the weight function of the tropicalization wtX is equal to one
on all top dimensional faces η of Σ.

Proof. The weight wtX(η) is equal to the intersection multiplicity of X with
the toric stratum CPΣη . In other words, it is the number of points in the variety
Xη counted with multiplicities. Since X is wunderschön, the variety Xη must
consist of a single point. Hence, for all facets η we have wtX(η) = 1. ■

A consequence of the wunderschön property is that, for each σ ∈ Σ, the
even rows of the E2 = E∞-page for Xσ, taking a priori the form shown in
(II.1), are in fact zero except in the leftmost position, which implies that
Hk(Xσ) = GrW

2k(Hk(Xσ)). Moreover, the odd rows of the E1-page are all
identically zero by the following lemma.

Lemma II.2.3. Let X ⊆ T be a wunderschön variety with respect to Σ. Then
H2k−1(Xσ) = 0 for k = 1, . . . , dim(Xσ) and all σ ∈ Σ.

Proof. The property is true for a wunderschön point. By induction on dimension,
we have H2k−1(Xσ) = 0 for k = 1, . . . , dim(Xσ) and all cones σ except the central
vertex 0, so that it remains to prove that H2k−1(X) = 0 for k = 1, . . . , dim(X).
For each such k, the (2k−1)-th row of the E2-page of the Deligne spectral sequence
is given by E0,2k−1

2 = H2k−1(X) = GrW
2k−1(H2k−1(X)) and all other terms are

0. Since X is wunderschön, GrW
2k−1(H2k−1(X)) = 0, and so H2k−1(X) = 0. ■
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Since the E2-page is the cohomology of the E1-page, this proves the following
lemma.

Lemma II.2.4. For X ⊆ T a wunderschön variety with respect to Σ, and for
each cone σ ∈ Σ and each k, we have the following exact sequences

0 −→ Hk(Xσ) res−−→
⊕
µ≻σ

|µ|=|σ|+k

H0(Xµ) Gys−−→
⊕
ν≻σ

|ν|=|σ|+k−1

H2(Xν) Gys−−→ · · ·

· · · Gys−−→
⊕
ξ≻σ

|ξ|=|σ|+1

H2k−2(Xξ) Gys−−→ H2k(Xσ) −→ 0,

where res denotes the logarithmic residue map and Gys denotes a signed sum of
suitable Gysin maps.

Example II.2.5 (Wunderschön curves are rational). We classify wunderschön
curves X ⊆ T. A tropical compactification X consists of adding points to X.
Points have pure mixed Hodge structure on their cohomology. Thus, for X to
be wunderschön with respect to a fan Σ, it is necessary that each stratum Xζ

for ζ ∈ Σ1 be connected, i.e., consists of a single point. The Deligne weight
spectral sequence degenerates on the E2 page, and is shown in Figure II.1 and
Figure II.2. Note that H2(X) is trivial. Moreover, if X is wunderschön, then
H1(X) = GrW

1 (H1(X)) must be trivial.

H0(
⊔

ζ∈Σ1
Xζ) H2(X) 2

0 H1(X) 1

0 H0(X) 0

−1 0

Figure II.1: E1-page from
Example II.2.5

GrW
2 (H1(X)) 0 2

0 GrW
1 (H1(X)) 1

0 GrW
0 (H0(X)) 0

−1 0

Figure II.2: E2-page from
Example II.2.5

Therefore, a non-singular curve X ⊆ T is wunderschön if and only if the
curve X is isomorphic to CP1 and it meets each toric boundary divisor of CPΣ
in only one point. We conclude that the only wunderschön (open) curves are
complements of a finite set of points in a non-singular rational curve.

II.2.6 Tropical homology and cohomology

We now briefly sketch the theory of tropical homology and cohomology, and
refer to [JRS18; IKMZ19; JSS19; AP20; AP21; Aks23; GS23] for details. We
work with Q-coefficients.
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Let Σ be a rational fan in NR with support X. Let X be the closure of X
inside the tropical toric variety TPΣ. The closure X has a cellular structure
Σ where the cells of Σ consist of the closures of the cones in Σσ for all σ ∈ Σ.
In particular, each face of Σ is indexed by a pair of cones σ, γ ∈ Σ satisfying
γ ≽ σ, and denoted Cσ

γ ∈ Σ. For each face Cσ
γ ∈ Σ, the p-th multi-tangent space

Fp(Cσ
γ ) (with Q-coefficients) is defined as

Fp(Cσ
γ ) :=

∑
η≽γ

p∧
(Nη/Nσ) ⊗ Q ⊆

p∧
Nσ

Q .

Moreover, for α ≼ β two faces of Σ, there is a map ιβ≽α : Fp(β) → Fp(α),
which is an inclusion if both faces lie in the same subfan Σσ for some σ, or if
α = Cσ

η and β = Cσ′

η with η ≽ σ ≻ σ′, then ιβ≽α is induced by the projection
Nσ′ → Nσ. Generally, the map ιβ≽α is defined as compositions of such inclusions
and projections. Furthermore, by dualizing, we obtain the p-th multi-cotangent
spaces Fp(α) and reversed morphisms.

By selecting orientations for each of the cones α ∈ Σ, we obtain relative
compatibility signs sign(α, β) ∈ {±1} for α ≺ β with |β| = |α| + 1. We may thus
use the multi-tangent spaces to define a chain complex

Cp,q(Σ) :=
⊕

α∈Σq

Fp(α),

that is, summing over faces α of dimension q in Σ, with differentials ∂q :=
Cp,q(Σ) → Cp,q−1(Σ) defined component-wise as the maps sign(α, β)ιβ≻α when
α ≺ β and |β| = |α| + 1, and defined to be 0, otherwise. Similarly, by dualizing
everything, we obtain a cochain complex Cp,q(Σ) for the multi-cotangent spaces.

The homology groups Hp,q(Σ) := Hq(Cp,•(Σ)) of the complex Cp,•(Σ) are
invariants of the canonically compactified support X of the support X of the
fan Σ. Therefore, we define the tropical homology of X as the homology
Hp,q(X) := Hq(Cp,•(Σ)) of the complex Cp,•(Σ). The tropical cohomology
of X is Hp,q(X) := Hq(Cp,•(Σ)).

In fact, tropical homology and cohomology can be defined for any rational
polyhedral space. Moreover, there are various equivalent descriptions of tropical
(co)homology in terms of cellular, singular, and sheaf theoretic terms [MZ14;
IKMZ19; GS23]. For any rational polyhedral space Z, we set

Hk(Z) :=
⊕

p+q=k

Hp,q(Z).

For example, for a fanfold X, the tropical homology is Hp,q(X) = Fp(0) if q = 0
and 0 otherwise, and the tropical cohomology of X is Hp,q(X) = Fp(0) if q = 0
and 0 otherwise [JSS19, Proposition 3.11].

If X is a tropical fanfold, the balancing condition implies the existence
of a fundamental class [X] ∈ Hd,d(X), which induces a cap product ⌢
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[X] : Hp,q(X) → Hd−p,d−q(X) for each p, q ∈ {0, . . . , d}. When these maps
are isomorphisms for all p and q, the variety X is said to satisfy tropical Poincaré
duality.

Definition II.2.6. A tropical fanfold X is called a tropical homology manifold if
one of the three following equivalent conditions hold:

• There exists a unimodular fan Σ with support equal to X such that each
of the canonical compactifications Xσ satisfies tropical Poincaré duality,
for all cones σ ∈ Σ.

• For any unimodular fan Σ with support equal to X, each of the canonical
compactifications Xσ satisfies tropical Poincaré duality, for all cones σ ∈ Σ.

• Any open subset U of X satisfies tropical Poincaré duality,, i.e.,, the
tropical Poincaré duality induces an isomorphism between the tropical
cohomology and the tropical Borel-Moore homology of U (see [JRS18;
JSS19] for details).

This definition corresponds to the notion of tropical smoothness in [AP21]
and to local tropical Poincaré duality spaces in [Aks23]. The equivalence of the
three statements is non-trivial and follows from Theorems 3.20, 3.23 and 7.9 of
the article [AP21].

II.2.7 Chow rings of fans

We now recall some facts about the Chow ring of a fan, see for instance [AP20;
AP21] for more details.

Let Σ be a unimodular fan in a vector space NR. The Chow ring A•(Σ) is
the quotient ring

A•(Σ) := Q[xζ | ζ ∈ Σ1]
/

(I + J)

with a variable xζ for each ray ζ ∈ Σ1. Here I is the ideal generated by all
monomials xζ1 · · · xζl

such that the rays ζ1, . . . , ζl do not form a cone of Σ; and
J is the ideal generated by the expressions

∑
ζ∈Σ1

⟨m, eζ⟩xζ , where eζ ∈ N is the
primitive vector of the ray ζ and m ranges over elements of the dual lattice M .

For σ ∈ Σ, we define xσ := xζ1 · · · xζk
, where ζ1, . . . , ζk are the rays of σ. As

a vector space, A•(Σ) is generated by xσ, σ ∈ Σ. For a pair of cones δ ≼ σ,
there is a Gysin map Gysσ≽δ : A•(Σσ) → A•+|σ|−|δ|(Σδ). This map is defined by
mapping xη′ ∈ Σσ to xηxζ1 · · · xζr

, where η′ is a face of Σσ, η is the corresponding
face in Σδ, and ζ1, . . . , ζr are the rays of σ not in δ.

Since Σ is unimodular, there is an isomorphism of rings ΦΣ : A•(Σ) ∼−→
A•(CPΣ) from the Chow ring of Σ to the Chow ring of the toric variety CPΣ, see
e.g., [Bri96, Section 3.1]. Furthermore, the cycle class map cycΣ : A•(CPΣ) →
H2•(CPΣ) gives a graded ring homomorphism to cohomology, see [Ful84,
Corollary 19.2]. Consider a subvariety X of the torus, and assume that the
support of Σ is Trop(X). Let X be the corresponding compactification. There
is the restriction map of rings r∗ : H•(CPΣ) → H•(X). Composing all these
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homomorphisms gives a morphism of rings Φ: A•(Σ) → H2•(X) which maps xσ

to the class of Xσ.
In the tropical world, there is a similar map. Let X be the support of Σ and

let X be the corresponding compactification. One can consider the composition

A•(Σ) → H2•(TPΣ) → H2•(X)

mapping xσ to the class of Xσ. By the Hodge isomorphism theorem [AP21,
Theorem 7.1], this composition induces an isomorphism of rings

⊕
k

Ak(Σ) ∼−→⊕
k

Hk,k(X). We define the inverse map Ψ: H•(X) → A•/2(Σ) by mapping
(p, q)-classes to zero if p ̸= q. Here, by convention, Ak/2(Σ) is trivial for odd k. If
Σ is a tropical homology manifold, Ψ is an isomorphism by [AP21, Theorem 7.2],
that is, Hp,q(X) is trivial for p ̸= q.

Kähler package

We recall the Kähler package for Chow rings of fans, see [AP23]. Assume Σ is
tropical and quasi-projective,, i.e.,, there exists a conewise linear function f on
Σ which is strictly convex in the following sense. For any σ ∈ Σ, there exists a
linear map m ∈ M such that f − m is zero on σ and strictly positive on U ∖ σ
for some open neighborhood U of the relative interior of σ. To such an f , one
can associate the element L :=

∑
ζ∈Σ1

f(eζ)xζ ∈ A1(Σ). These elements coming
from strictly convex functions are called ample classes. Since Σ is tropical, the
degree map deg : Ad(Σ) → Q mapping xη to wt(η) for any facet η of Σ is a
well-defined morphism.

The Chow ring A•(Σ) is said to verify the Kähler package if the following
holds:

• (Poincaré duality) the pairing

Ak(Σ) × Ad−k(Σ) → Q,
(a, b) 7→ deg(ab),

is perfect for any k;

• (Hard Lefschetz theorem) for any ample class L, the multiplication by Ld−2k

induces an isomorphism between Ak(Σ) and Ad−k(Σ) for all k ≤ d/2;

• (Hodge-Riemann bilinear relations) for any k ≤ d/2 and any ample class
L, the bilinear map

Ak(Σ) × Ak(Σ) → Q,
(a, b) 7→ (−1)k deg(Ld−2kab),

is positive definite on ker( ·Ld−2k+1 : Ak(Σ) → Ad−k+1(Σ)).

A tropical fanfold X is called Kähler if it is a tropical homology manifold and
there exists a quasi-projective unimodular fan of support X such that A•(Σσ)
verifies the Kähler package for any σ ∈ Σ. In such a case, any quasi-projective
unimodular fan Σ on X verifies the previous property (cf. [AP23]).
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II.2.8 Tropical Deligne resolution

Let Σ be a unimodular fan on some tropical homology manifold X. Let δ ≼ σ be
two faces of Σ. The inclusion itrop : Xσ → Xδ of canonically compactified
fanfolds, both satisfying tropical Poincaré duality, gives a homomorphism
itrop
∗ : Hk(Xσ) → Hk(Xδ). Applying the tropical Poincaré duality for both Xσ

and Xδ, this gives a map PD−1
Xδ

◦ itrop
∗ ◦ PDXσ : Hk(Xσ) → Hk+2(|σ|−|δ|)(Xδ),

called the tropical Gysin homomorphism and denoted Gystrop
σ≽δ.

In [AP21, Theorem 8.1], it is shown that for a fanfold X which is a tropical
homology manifold and a unimodular fan Σ with support X, there are tropical
Deligne resolutions, i.e., exact sequences for any k,

0 −→ Hk(X) −→
⊕

σ∈Σk

H0(Xσ) −→
⊕

δ∈Σk−1

H2(Xδ) −→ · · ·

· · · −→
⊕

ζ∈Σ1

H2k−2(Xζ) −→ H2k(X) −→ 0,

where the first non-zero morphism is given by integration (that is, by the
evaluation of the element α ∈ Hk(X) at the canonical multivector of each face
σ ∈ Σk), and all subsequent maps are given by the tropical Gysin homomorphisms
(with appropriate signs [AP21, Section 8]).

II.3 The induced morphism on cohomology by
tropicalization

The aim of this section is to define a map relating tropical cohomology to classical
cohomology, as well as to prove Proposition II.3.2, which relates Gysin maps in
tropical and classical cohomology.

Definition II.3.1. Let X ⊆ T be a subvariety and Σ a unimodular fan with
support X = trop(X), and X and X be the compactifications of X and X with
respect to Σ. We define

τ∗ : H•(X) → H•(X)

to be the ring homomorphism defined as the composition of the maps
Ψ: H•(X) → A•/2(Σ) with Φ: A•/2(X) → H•(X) from Section II.2.7.

The map τ∗ is the morphism comparing the tropical and classical cohomology
in order to define cohomologically tropical varieties in Definition II.1.1.

We will now relate the classical and tropical Gysin maps through the map
τ∗. This will be useful later for comparing Deligne sequences.

Proposition II.3.2. Let X = Trop(X) the be tropicalization of a subvariety
X ⊆ T, Σ a unimodular fan with support X, with σ, δ ∈ Σ such that δ is a face
of σ of codimension one, giving inclusion maps Xσ → Xδ and Xσ → Xδ. Then
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The induced morphism on cohomology by tropicalization

the following diagram commutes:

Hk(Xσ) Hk(Xσ)

Hk+2(Xδ) Hk+2(Xδ).

Gystrop
σ≻δ

τ∗

Gysσ≻δ

τ∗

Proof. Expanding the definition of τ∗, we obtain the following diagram

H•(Xσ) A•/2(Σσ) H•(Xσ)

H•+2(Xδ) A•/2+1(Σδ) H•+2(Xδ).

Gystrop
σ≻δ

Gysσ≻δ

Φ

Φ

Ψ

Ψ

Gysσ≻δ

The first square is commutative by [AP20, Remark 3.15], in light of [AP21,
Theorem 7.1]. The commutativity of the second square follows from the
functoriality of the cycle class map in light of [Bri96, Section 3.2] and [Ful84,
Section 19.2]. ■

Remark II.3.3. Let X ⊆ TN and X′ ⊆ TN ′ be two non-singular subvarieties
of tori associated to two lattices N and N ′, with X and X ′ the corresponding
tropicalizations, and two unimodular fans Σ and Σ′ with supports X and X ′,
respectively.

Assume there exists a morphism of lattices ϕ : N → N ′ which takes cones of Σ
to cones of Σ′ such that the induced map ϕ|X : X → X ′ is surjective. This makes
the induced morphism of toric varieties f : CPΣ → CPΣ′ proper [Ful93, Section
2.4]. We denote by f trop : TPΣ → TPΣ′ the induced morphism on tropical toric
varieties.

Furthermore, suppose that f(X) = X′. Since X is compact we have
that f(X) = f(X) = X′. This also gives f trop(X) = X ′ for the canonical
compactifications of X and X ′ with respect to Σ and Σ′. One can then prove
the commutativity of the following diagram

H•(X ′) H•(X′)

H•(X) H•(X).

τ∗

ftrop,∗ f∗

τ∗

Proposition II.3.4. Let X ⊆ T be a subvariety of complex dimension d and Σ a
unimodular fan with support X = trop(X), and X and X be the compactifications
of X and X with respect to Σ. Suppose X satisfies tropical Poincaré duality and
X is non-singular. Then τ∗ : H•(X) → H•(X) is injective.

Proof. Both maps Ψ: H2d(X) → Ad(Σ) and Φ: Ad(Σ) → H2d(X) commute with
the corresponding degree maps. Now for both tropical and classical cohomology,
the fact that the products induce perfect pairings implies that τ∗ is injective. ■
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II. Cohomologically tropical varieties

II.4 Irrelevance of fan

To be schön, wunderschön, cohomologically tropical, Kähler, or a tropical
homology manifold are all properties of the form “there exists a fan Σ such that
a specific property holds” with some restriction on the fan, as unimodularity
for instance. Informally, we say that such a property is fan irrelevant if we can
replace “there exists a unimodular fan” by “for any unimodular fan” (this is
strongly linked with the notion of shellable properties in [AP21]). It is already
known that to be schön, Kähler or a tropical homology manifold is fan irrelevant.
In this section we prove Theorems II.4.4 and II.4.5 about the fan irrelevance of
being cohomologically tropical and wunderschön. We begin with a lemma.

Lemma II.4.1. Suppose a schön subvariety X ⊆ T is cohomologically tropical.
Then the tropicalization X = trop(X) is a tropical homology manifold.

Proof. Let Σ be a unimodular fan whose support is trop(X). It follows that
the cohomology groups H•(Xσ) are all isomorphic to the cohomology groups
H•(Xσ), and so they verify Poincaré duality. We infer that X is a tropical
homology manifold. ■

Let X be a schön subvariety of the torus which is cohomologically tropical. It
follows from the previous lemma and the fan irrelevance of being a tropical
homology manifold that all the cohomology groups Hp,q(X) are vanishing
provided that p ̸= q, for the canonical compactification X of X with respect to
any unimodular fan with support X.

Let Σ be a unimodular fan with support the fanfold X, and let σ be a cone
in Σ of dimension at least two. Let Σ′ be the barycentric star subdivision of Σ
obtained by star subdividing σ, see e.g. [Wło03; AP21]. Denote by ρ the new
ray in Σ′. Let X and X ′ be the compactifications of X with respect to Σ and
Σ′, respectively.

The following theorem provides a description of the Chow ring of Σ′ in terms
of the Chow rings of Σ and Σσ.

Theorem II.4.2 (Keel’s lemma). Let J be the kernel of the surjective map
i∗0≼σ : A•(Σ) → A•(Σσ) and let

P (T ) :=
∏
ζ≺σ
|ζ|=1

(xζ + T ).

There is an isomorphism of Chow groups given by the map

χ : A•(Σ)[T ]
/

(JT + P (T )) ∼−→ A•(Σ′)

which sends T to −xρ and which verifies

∀ζ ∈ Σ1, χ(xζ) =
{

xζ + xρ if ζ ≺ σ,
xζ otherwise.
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Irrelevance of fan

In particular this gives a vector space decomposition of A•(Σ′) as

A•(Σ′) ∼= A•(Σ) ⊕ A•−1(Σσ)T ⊕ · · · ⊕ A•−|σ|+1(Σσ)T |σ|−1. (II.2)

In addition, if X is the tropicalization of a schön subvariety X ⊆ T, and X
and X′ are compactifications of X with respect to Σ and Σ′, respectively, then
we have an isomorphism

H•(X′) ∼= H•(X)[T ]
/

(JT + P (T )),

and the decomposition

H•(X′) ∼= H•(X) ⊕ H•−1(Xσ)T ⊕ · · · ⊕ H•−|σ|+1(Xσ)T |σ|−1. (II.3)

Here, by an abuse of notation, the variable T denotes the image of −xρ in H2(X′)
for the induced map A•(Σ′) → H•(X′), J is the kernel of H•(X) → H•(Xσ),
and P (T ) is the image of

∏
ζ≺σ
|ζ|=1

(xζ + T ) in H•(X)[T ] under the map A•(Σ) →

H•(X).

Decomposition (II.2), for instance, means that for any 1 ≤ k ≤ |σ|, we have
a natural injective map

A•(Σσ) ↪→ A•(Σ′ρ)
− Gysρ≻0

↪−−−−−−→ A•+1(Σ′) T k−1

↪−−−→ A•+k(Σ′).

The piece A•(Σσ)T k in the above decomposition then denotes the image of the
above map. We refer to [Kee92] and [AP23] for more details and the proof.

Two unimodular fans with the same support are called elementary equivalent
if one can be obtained from the other by a barycentric star subdivision. The
weak equivalence between unimodular fans with the same support is then defined
as the transitive closure of the elementary equivalence relation. We will need
the weak factorization theorem, stated as follows.

Theorem II.4.3 (Weak factorization theorem [Mor96; Wło97]). Two unimodular
fans with the same support are always weakly equivalent.

We are now in a position to prove the independence of being cohomologically
tropical from the chosen fan for schön varieties.

Theorem II.4.4. Suppose that the subvariety X ⊆ T is schön and let X = trop(X)
be its tropicalization. The following are equivalent.

II.4.4.1. There exists a unimodular fan Σ with support X such that X is
cohomologically tropical with respect to Σ.

II.4.4.2. For any unimodular fan Σ with support X, X is cohomologically
tropical with respect to Σ.

Proof. Suppose that the subvariety X of the torus T is schön. Let X = trop(X).
Let Σ be a unimodular fan with support X such that X is cohomologically
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II. Cohomologically tropical varieties

tropical with respect to Σ. Let Σ′ be a second unimodular fan with support
X. We need to prove that X is cohomologically tropical with respect to Σ′. By
the weak factorization theorem, it will be enough to assume that Σ and Σ′ are
elementary equivalent.

We consider the compactifications X′ and X ′ of X and X with respect to Σ′,
and those with respect to Σ by X and X.

Consider first the case where Σ′ is obtained as a barycentric star subdivision
of Σ. Denote by σ the cone of Σ which has been subdivided and by ρ the new
ray of Σ′.

We start by explaining the proof of the isomorphism H•(X ′) ∼−→ H•(X′).
We use the notation preceding Theorem II.4.3. By Keel’s lemma, we get

A•(Σ′) ∼= A•(Σ)[T ]
/

(JT +P (T )) and H•(X′) ∼= H•(X)[T ]
/

(JT +P (T ))

with J and P (T ) as in Theorem II.4.2.
By the Hodge isomorphism theorem [AP21], see Section II.2.7, we have

isomorphisms Ap(Σ′) ∼−→ Hp,p(X ′) and Ap(Σ) ∼−→ Hp,p(X) for each p. Moreover,
since X is cohomologically tropical by Lemma II.4.1, all the cohomology groups
Hp,q(X ′) and Hp,q(X) are vanishing for p ̸= q.

The isomorphism H•(X ′) ∼−→ H•(X′) now follows from the commutativity
of the diagram in Remark II.3.3, the isomorphisms H•(X) ∼−→ H•(X) and
H•(Xσ) ∼−→ H•(Xσ), and the compatibility of the decompositions in Keel’s
lemma in the tropical and algebraic settings with respect to these isomorphisms.

Consider now an arbitrary cone δ of Σ′ and denote by η the smallest cone
of Σ which contains δ. The star fan Σ′δ of δ in Σ′ is isomorphic to a product
of two fans ∆ × Θ with ∆ a unimodular fan living in Nη

R and Θ a unimodular
fan living in Nσ,R

/
Nδ∩σ,R. In the case η ̸≼ σ, the first fan ∆ coincides with the

star fan Ση of η in Σ. Otherwise, when η ≼ σ, ∆ is the fan obtained from Ση

by subdividing the cone σ/η. The other fan Θ is 0 unless δ contains the ray
ρ in which case, Θ is the fan of the projective space of dimension |σ| − |σ ∩ δ|.
Similarly, X′δ admits a decomposition into a product Y × Z, where Y = Xη in
the case η ̸≼ σ, and Y is the blow-up of Xσ in Xη in the other case η ≼ σ. And
Z is CP0, that is a point, unless δ contains ρ in which case Z ∼= CP|σ|−|σ∩δ|.

The isomorphism H•(X ′δ) ∼−→ H•(X′δ) for δ can be then obtained from
the above description, and by observing that when σ is face of η and ∆ is the
subdivision of η/σ in Ση, we can apply the argument used in the first treated
case above to Xη and Xη to conclude.

Consider now the case where Σ is obtained as a barycentric star subdivision of
Σ′. We only discuss the isomorphism H•(X ′) ∼−→ H•(X′), the other isomorphisms
H•(X ′δ) ∼−→ H•(X′δ) for δ ∈ Σ′ can be obtained by using the preceding
discussion. The cohomology of X ′ appears as a summand of the cohomology of
X according to the decomposition in Keel’s lemma. Similarly, the cohomology
of X′ is a summand of the cohomology of X. Using the compatibility of the
decompositions in the Keel’s lemma, the isomorphism H•(X) ∼−→ H•(X) induces
an isomorphism H•(X ′) ∼−→ H•(X′) between the two summands. ■
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Theorem II.4.5. Suppose that the subvariety X ⊆ T is wunderschön with respect
to some unimodular fan. Then X is wunderschön with respect to any unimodular
fan with support X = trop(X).

Proof. The proof of this theorem is similar to the proof given above for
Theorem II.4.4. We omit the details. ■

II.5 Divisorial cohomology

In this section, we prove Theorem II.5.1 which states that the cohomology of a
wunderschön variety is divisorial.

The cohomology of a non-singular algebraic variety Z is divisorial if there is
a surjective ring homomorphism Q[x1, . . . , xs] → H•(Z) such that the image of
each xi is [Di] ∈ H2(Z), the Poincaré dual of some divisor Di of Z. Similarly,
the Chow ring A•(Z) is divisorial if there is a surjective ring homomorphism
Q[x1, . . . , xs] → A•(Z) such that the image of each xi is the class of a divisor Di

of Z. In this case, we also say that the (Chow) cohomology of Z is generated
by the divisors D1, . . . , Ds. Notice that if Z is projective and its cohomology
is divisorial, then all its cohomology is generated by algebraic cycles and the
Hodge structure on the cohomology is Hodge-Tate.

The Chow ring of any non-singular complex toric variety is divisorial
and generated by the toric boundary divisors, see [Bri96, Section 3.1] and
Section II.2.7. It follows, using our previous notations, that if the the map
τ∗ : H•(X) → H•(X) is a surjection, then the cohomology of X is divisorial and
generated by the irreducible components of X ∖ X.

Theorem II.5.1. Let X ⊆ T be a wunderschön subvariety. Let X be the
compactification of X with respect to a unimodular fan Σ with support X =
trop(X). Then the cohomology of X is divisorial and generated by irreducible
components of X ∖ X.

Proof. We proceed by induction on the dimension of X. If X is a point, then
this is trivial. Notice also that if X is a wunderschön curve then X must be CP1

and hence the cohomology is divisorial as H•(CP1) ∼= Q[x]/⟨x2⟩.
We have the following commutative diagram

⊕
ρ∈Σ1

Q[xζ | ζ ∈ Σ1 and (ρ + ζ) ∈ Σ2]
⊕

ρ∈Σ1
H•(Xρ)

Q[xζ | ζ ∈ Σ1] H•+2(X),

⊕
ρ fρ

⊕
ρ −·xρ Gys

f

where ρ + ζ is the cone generated by the rays ρ and ζ, the fρ are surjective ring
homomorphisms which send xζ to [Xρ+ζ ], and f maps xζ to [Xζ ]. Since X is
wunderschön the maps ⊕

ρ∈Σ1

Hk(Xρ) → Hk+2(X)
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from the Deligne weight spectral sequence are all surjections for k ≥ 0 and we
deduce that f is surjective. Therefore, the cohomology of X is divisorial and is
generated by the components of X ∖ X. ■

II.6 Proof of the main theorem

We now turn to proving Theorem II.6.1.

Theorem II.6.1. Let X ⊆ T be a schön subvariety with tropicalization X =
trop(X). Then the following statements are equivalent.

II.6.1.1. X is wunderschön and X is a tropical homology manifold,

II.6.1.2. X is cohomologically tropical.

Moreover, if any of these statements holds, then X is Kähler.

Proof. We begin by assuming that X is wunderschön and that X is a tropical
homology manifold, and prove that X is cohomologically tropical. We must show
that the maps τ∗ : H•(Xσ) → H•(Xσ) are isomorphisms for all σ ∈ Σ. Notice
that X is non-singular since it is wunderschön.

If X is of dimension 0 and wunderschön it consists of a single point. Therefore,
its tropicalization is a point of weight 1 thus X is cohomologically tropical. We
proceed by induction on the dimension of X. Therefore, we can assume that
each of the Xσ is cohomologically tropical for all cones σ ∈ Σ not equal to the
origin.

Since X is schön, let D = X ∖ X be the simple normal crossing divisor
of the compactification. The Deligne weight spectral sequence for the tropical
compactification (X, D) of X abuts in the associated graded objects of the weight
filtration of the cohomology of Hk(X). Since X is wunderschön, the E1-page
of Deligne spectral sequence extends to exact rows by Lemma II.2.4, with the
morphisms being sums of Gysin maps. In the tropical setting, since X is a
tropical homology manifold, there are tropical Deligne resolutions Section II.2.8,
where the maps are sums of tropical Gysin maps.

Now by induction, τ∗ : H•(Xσ) → H•(Xσ) is an isomorphism, and moreover
the appropriate commutative diagrams using the classical and tropical Gysin
maps commute by Proposition II.3.2. We may therefore identify the two exact
sequences. Applying the five lemma in the cases k ≥ 2, exactness gives us
isomorphisms Hk(X) → Hk(X) and τ∗ : H2k(X) → H2k(X). For k = 0, since
X is assumed to be connected, there is an isomorphism H0(X) ∼= Q ∼= H0(X),
and it merely remains to show the claim for k = 1.
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We consider the following commutative diagram

0 H1(X)
⊕

ζ∈Σ1

H0(Xζ) H2(X) 0

0 H1(X)
⊕

ζ∈Σ1

H0(Xζ) H2(X) 0.
g

τ∗⊕
τ∗

By induction, the middle vertical arrow is an isomorphism, and we wish to
show that the rightmost vertical arrow is an isomorphism. By a diagram chase,
exactness of the lower row implies that this arrow is surjective. The injectivity
follows from Proposition II.3.4. Therefore, the map τ∗ : H2(X) → H2(X) is
an isomorphism. Together with our induction assumption on the maps τ∗ this
proves that X is cohomologically tropical.

Now assume that X is cohomologically tropical. By Lemma II.4.1, we
know that X is a tropical homology manifold. It remains to show that X is
wunderschön. We again proceed by induction on dimension as the case for points
is trivial. We equip X with the tropical compactification X given by Σ, such
that all open Xσ are wunderschön by induction, for σ different from the central
vertex of Σ. We have H0(X) ∼= H0(X) by hypothesis, and H0(X) ∼= Q, thus X
is connected and so is X. It remains to show that the mixed Hodge structure on
Hk(X) is pure of weight 2k for each k. This follows from comparing the Deligne
weight spectral sequence and tropical Deligne resolution by Proposition II.3.2,
using that all the maps τ∗ are isomorphisms. Hence X is wunderschön.

Finally we prove that if X is cohomologically tropical, then X is Kähler. By
Lemma II.4.1, we know that X is a tropical homology manifold. There exists
a unimodular fan Σ with support X such that Σ is quasi-projective. It follows
that the Chow rings A•/2(Σσ), σ ∈ Σ, are isomorphic to H•(Xσ). Moreover,
since Σ is quasi-projective, and X is schön, Xσ is a non-singular projective
variety, and so its cohomology verifies the Kähler package. We conclude that X
is Kähler. ■

Theorem II.6.2 (Isomorphism of cohomology on open strata). Suppose that
X ⊆ T is schön and cohomologically tropical. Let Σ be any unimodular fan with
support X = trop(X). Then we obtain isomorphisms

τ∗ : Hk(Xσ) ∼−→ Hk(Xσ)

for all σ ∈ Σ and all k.

Proof. It suffices to prove the statement for X, since if X is cohomologically
tropical so are all strata Xσ. It follows from the proof of Theorem II.6.1,
that if X is cohomologically tropical, then X is wunderschön and hence the
2k-th row of the 1st page of the Deligne weight spectral sequence provides a
resolution of Hk(X) for all k. Moreover, the maps τ∗ : H•(Xσ) → H•(Xσ) are
isomorphisms for all strata and they commute with the tropical and complex
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II. Cohomologically tropical varieties

Gysin maps. Therefore, we obtain an isomorphisms of the resolutions which
induces isomorphisms τ∗ : Hk(Xσ) → Hk(Xσ) for all σ ∈ Σ and all k. ■

II.7 Globalization

We discuss a natural extension of the main theorem of [IKMZ19]. We follow
the setting of that work. Let π : X → D∗ be an algebraic family of non-
singular complex algebraic varieties in CPn over the punctured disk D∗. Let
Z ⊆ TPn be the tropicalization of the family. We suppose Z admits a unimodular
triangulation. This is always possible after a base change of the form D∗ → D∗,
z 7→ zk, for k ∈ Z+. Using the triangulation, we construct a degeneration of CPn

to an arrangement of toric varieties, and taking the closure of the family X inside
this toric degeneration leads to a family X extended over the full punctured disk
D. By Mumford’s proof of the semistable reduction theorem, we can always find
a triangulation, after a suitable base change, such that the extended family is
regular and the fiber over zero is reduced and simple normal crossing. This is
known as a semistable extension of the family π : X → D∗.

Denote by X0 the fiber at zero of the extended family. Note that since
the extended family is obtained by taking the closure of the family in a toric
degeneration of CPn, each open stratum in X0 will be naturally embedded in an
algebraic torus. For t ∈ D∗ denote by Xt the fiber of π over t.

Theorem II.7.1. Let π : X → D∗ be an algebraic family of subvarieties in CPn

parameterized by the punctured disk and let π : X → D be a semistable extension.
If the tropicalization Z ⊆ TPn is a tropical homology manifold and all the open
strata in X0 are wunderschön, then Hp,q(Z) is isomorphic to the associated
graded piece W2p/W2p−1 of the weight filtration in the limiting mixed Hodge
structure Hp+q

lim . The odd weight graded pieces in Hp+q
lim are all vanishing.

Moreover, for t ∈ D∗, we have dim Hp,q(Xt) = dim Hp,q(Z), for all non-
negative integers p and q.

Proof. Since Z is a tropical homology manifold, the local fanfolds appearing
in the tropical variety Z are all tropical homology manifolds. Moreover, the
Chow ring of any unimodular fan supported in a local fanfold of Z is the
cohomology ring of a non-singular proper complex algebraic variety. It follows
that this Chow ring verifies the Kähler package provided that the fan is quasi-
projective. We apply now the Steenbrink-Tropical comparison theorem proved
in [IKMZ19; AP20] to obtain the isomorphism between the cohomology groups
Hp,q(Z) with the cohomology of the Steenbrink sequence in weight 2p associated
to the triangulation, on one side, and the vanishing in the odd-weight of the
cohomology of the Steenbrink sequence on the other side. The Steenbrink
spectral sequence gives the weight 2p part of the limit mixed Hodge structure in
degree p + q. The wunderschön assumption implies that the limit mixed Hodge
structure is of Hodge-Tate type. We conclude similarly to the proof of Corollary
2 in [IKMZ19]. ■
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The following statement shows that degenerations appearing in the above
theorem are all maximal.

Theorem II.7.2. Notations as in Theorem II.7.1, the family X → D∗ is maximally
degenerate.

Proof. By the Deligne weight spectral sequence, each closed stratum in X0 has a
cohomology of Hodge-Tate type. Steenbrink spectral sequence then shows that
the limit mixed Hodge structure is Hodge-Tate. ■

We discuss maximal degenerations further in Section II.8.4.

II.8 Discussions

II.8.1 Examples

In this section, we give various examples of varieties verifying some but not all
conditions of the main Theorem II.6.1. These examples tend to demonstrate
that the main theorem cannot be weakened.

II.8.1.1 A wunderschön variety which is not cohomologically tropical

Take N = Z2. Let X ⊆ TN be the conic given by the equation a + bz1 +
cz2 + dz1z2 = 0 for generic complex coefficients a, b, c and d. The variety X is
CP1 with four points removed. This is a wunderschön variety: looking at the
compactification X ⊆ (CP1)2, X is non-singular and the intersections with torus
orbits are the points hence non-singular, so that X is schön. Moreover, each of
the points removed is trivially wunderschön. Finally, the Deligne weight spectral
sequence shows that X has pure Hodge structure. However, the tropicalization
X of X is the union of the axes in R2, which is not uniquely balanced,, i.e.,,
dim H2(X) = 2 > 1. This means that X is not a tropical homology manifold
(see [Aks23, Theorem 4.8]). Moreover, computing the cohomology groups of X,
we obtain dim H0(X) = 1, dim H1(X) = 0 and dim H2(X) = 2, which differs
from the cohomology groups of the sphere X.

II.8.1.2 A schön variety with pure strata, whose tropicalization is a
tropical homology manifold but which is not cohomologically
tropical

Let X be a generic conic in (C∗)2. The variety X is CP1 with six points removed.
Its tropicalization is the usual tropical line equipped with weights equal to 2 on
all edges, hence again a tropical homology manifold by [Aks23, Theorem 4.8].
The variety X is schön since it is non-singular, and each one of the three strata
consists of two distinct points, hence it is non-singular. The mixed Hodge
structure on X is pure, as the Deligne weight spectral sequence shows that
GrW

1 H1(X) = H1(X) = 0. However, it is not wunderschön since its strata
are not connected. The map τ∗ : H•(X) → H•(X) is an isomorphism: it maps
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the class of a point in X to twice the class of a point in X. Nevertheless, X
is not cohomologically tropical since, for any ray ζ of X, H0(Xζ) ∼= Q2 but
H0(Xζ) ∼= Q.

II.8.1.3 A schön variety which is not pure nor cohomologically tropical
and whose tropicalization is a tropical homology manifold

Consider the punctured elliptic curve X in (C∗)2 of equation az2
1 +bz2 +cz1z2

2 = 0
for generic complex coefficents a, b and c. Topologically it is a torus punctured
in three points. The tropicalization is the unimodular tropical line of weight
one with rays generated by (2, 1), (−1, 1) and (−1, −2), which is a tropical
homology manifold. The variety X is non-singular and connected, and each
of the three strata at infinity of its compactification is a point hence non-
singular and connected. Hence X is schön. The cohomology group H1(X)
is nontrivial of dimension 2. However, H1(X) is trivial. Hence X is not
cohomologically tropical. This is because X is not wunderschön. More precisely,
H1(X) is not pure of weight 2. Indeed, by the Deligne weight spectral sequence
GrW

1 (H1(X)) ∼= H1(X) ̸= 0.

II.8.1.4 A non-schön variety which is cohomologically tropical

Once again, N is of dimension 2. Let X ⊆ TN be given by the equation
(z1 − a)(z2 − b) = 0 for a, b ̸= 0. The variety X is a reducible nodal curve
with two components both being CP1 with two punctures. The tropicalization
is again the union of the two coordinate axes in R2, which is not a tropical
homology manifold, and the variety X is not schön as it is singular. However,
for each line of the cross, the cocycle associated to this line is mapped to the
cocycle associated to the corresponding sphere. This is an isomorphism between
H2(X) and H2(X). Since H0(X) is trivially isomorphic to H0(X) and other
cohomology groups are trivial, we deduce that X is cohomologically tropical.

II.8.2 Hyperplane arrangement complements

We will now see that all three properties of Theorem II.6.1 are satisfied for
complements of projective hyperplane arrangements. We will use the de Concini-
Procesi model of the complement of a projective hyperplane arrangement [DP95],
as discussed in [MS15, Section 4.1]. Let A = {Hi}n

i=0 be an arrangement of
n + 1 hyperplanes in Pd

C, not all having a common intersection point, and let
XA = Pd

C ∖
⋃

Hi∈A Hi be the complement of the arrangement. For each i, let
ℓi be the homogeneous linear form such that Hi = {z ∈ Pd

C | ℓi(z) = 0}. These
define a map XA → (C∗)n given by z 7→ (ℓi(z)) in homogeneous coordinates
on (C∗)n. This map is injective, since no z ∈ XA lies on all hyperplanes by
assumption, and induces an isomorphism of XA ∼= YA, where YA is a subvariety
of (C∗)n, see [MS15, Proposition 4.1.1] for details. By a theorem of Ardila
and Klivans [AK06], the tropicalization YA = Trop(YA) is the support of the
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Bergman fan ΣMA of the matroid MA associated to the arrangement A, see
[MS15, Sections 4.1–4.2].

First, Tevelev shows [Tev07, Theorem 1.5] that the variety XA is schön, it is
clearly connected, and by [Sha93], its cohomology has a pure Hodge structure of
Hodge-Tate type. Moreover, given a face σ ∈ ΣMA , the star fan of σ corresponds
to the complement of a hyperplane arrangement. By induction, this shows that
complements of hyperplane arrangements are wunderschön.

Furthermore, it is shown in [JRS18; JSS19] by an inductive argument that the
Bergman fan ΣMA of a matroid is a tropical homology manifold. Therefore, one
can apply Theorem II.6.1, which gives us that YA is cohomologically tropical,
i.e. the map τ∗ : H•(Y A) → H•(YA) is an isomorphism.

In light of Theorem II.6.2, this can be compared with the main result of
[Zha13], also independently proved in [Sha11], showing that H•(XA) ∼= H•(XA),
however lacking explicit maps.

II.8.3 A non-matroidal example

We present an example of X ⊆ TN which is not a complement of a hyperplane
arrangement yet is wunderschön, cohomologically tropical, and the tropicalization
trop(X) is a tropical homology manifold.

The variety X will be the complement of an arrangement of lines and a single
conic in CP2. Let [z0 : z1 : z2] be homogeneous coordinates on CP2. Let L0, L1,
and L2 be the coordinate lines of CP2 so that Li is defined by zi = 0. Let L3 be
defined by the linear form z0 − z1 + z2 = 0 and let the conic C be defined by
z2

1 + z2
2 − z0z1 − 2z1z2 = 0. Let A denote the union of L0, . . . , L3, C.

As depicted in Figure II.3, note that C is tangent to L1 at the point [1 : 0 : 0]
where L1 intersects L2. Also the conic C is tangent to L0 at the intersection
point [0 : 1 : 1] with L3. The conic also passes through the intersection point
[1 : 1 : 0] of L2 and L3.

Consider the map ϕ : CP2 ∖ A → (C∗)4 defined by

[z0 : z1 : z2] 7→ (z̃1, z̃2, 1−z̃1+z̃2, z̃2
1+z̃2

2−z̃1−2z̃1z̃2), with z̃1 = z1

z0
and z̃2 = z2

z0
.

Let X ⊆ (C∗)4 denote the image of the map ϕ. The space trop(X) is 2-
dimensional and is the support of the fan described below.

The fan has 8 rays in directions given in Figure II.4. Each ray is adjacent to
exactly 3 faces of dimension 2 for a total of 12 faces of dimension 2. The structure
is given in Figure II.4: we draw an edge between two vertices if the there is a face
between the two corresponding rays. Note that to get a unimodular subdivision,
one has to add some rays, for instance the rays α and β of Figure II.4. We
denote by Σ this unimodular fan.

It can be verified in polymake that this fan is a tropical homology manifold
and its tropical Betti numbers are 1, 0, 6, 0, 1. For an alternative proof, note
that the the fan Σ is obtained by the process of tropical modification [MR18]
as follows. Let ΣU3,4 ⊆ R3 be the Bergman fan of the uniform matroid U3,4.
Its rays are the rays 0, 1, 2 and 3 in Figure II.4, where we forget the fourth
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L1

L2

L0

L3

C

Figure II.3: A very-affine variety X which is not a complement of hyperplane
arrangement and which verifies the main theorem, see Section II.8.3.

0 1 2 3 4 a b c
−1 1 0 0 0 2 0 −2
−1 0 1 0 0 1 1 −2
−1 0 0 1 0 0 1 −1
−2 0 0 0 1 2 1 −2

α β
1 −1
1 −1
0 0
0 −1

0 1

23

4 a

α

b

c

β

Figure II.4: The combinatorial structure of a non-Bergman fan verifying the
main theorem described in Section II.8.3.

coordinate. Let C ⊆ ΣU3,4 be a tropical trivalent curve with rays a, b, c (once
again we forget the last coordinate). Then Σ in R4 is obtained by a tropical
modification of ΣU3,4 along C. By [JRS18], the Bergman fan ΣU3,4 is a tropical
homology manifold, see also Section II.8.2. By [Aks23, Theorem 4.8] the trivalent
tropical curve is also a tropical homology manifold. By [AP21] the modification
of ΣU3,4 ⊆ R3 along C is a tropical homology manifold. The tools developed in
this last article also allow to compute the cohomology of X quite easily, and to
check that the fan is Kähler.

The compactification of X in CPΣ is given as follows. Consider CP2 blown
up in the three points whose homogeneous coordinates are [1 : 0 : 0], [0 : 1 : 1],
and [1 : 1 : 0]. Then, in the blow up, the exceptional divisor above [1 : 0 : 0],
the proper transform of C, and the proper transform of L1 all intersect in a
single point. Similarly, there is a triple intersection of the exceptional divisor
above [0 : 1 : 1] and the proper transforms of C and L0. We further blow-
up these two intersection points to obtain a surface X. The divisor X ∖ X
consists of the five exceptional divisors and the proper transforms of all curves
in A. Therefore, dim H2(X) = 6 and dim H0(X) = dim H4(X) = 1 and
dim Hk(X) = 0 otherwise.

We claim that X is wunderschön. Indeed, for each ray ζ of the fan Σ
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the variety Xζ is CP1 with two or three marked points corresponding to the
intersections with the other divisors in X ∖ X, so it is wunderschön. Moreover,
X is non-singular and connected, and its cohomology is pure. Hence, X is
wunderschön.

II.8.4 Maximal degenerations

Motivated by the work of Deligne and our results Theorem II.7.1 and
Theorem II.7.2, we can ask the following question.

Question II.8.1. Is there a tropical geometric characterization of maximally
degenerate families of complex algebraic varieties? It is true that those families
in which the open strata of special fibers have a cohomology which is pure of
Hodge-Tate type are exactly those covered by our Theorem II.7.1?

The question is intimately related to the work of Yang Li [Li20] which reduces
the SYZ conjecture in maximally degenerate families of complex algebraic
varieties to the existence of solutions to a tropical Monge-Ampère equation
(once this has been properly formulated). For those degenerations appearing in
Theorem II.7.1, our results show that the corresponding tropical variety is Kähler
in the sense of [AP20] and moreover recovers the geometry of the degenerate
fiber as well as the limit Hodge-theoretic geometry of the family. Tropical
Hodge theory [AP20] can be then used to properly formulate the Monge-Ampère
equation on the tropicalization using tropical Kähler forms.

II.8.5 Shellability

It seems plausible that a framework parallel to the one in [AP21; AP23] can be
developed for properties of tropicalization of algebraic varieties. The properties
discussed in this paper concern pairs consisting of a subvariety of an algebraic
torus and a fan structure on its tropicalization. Three basic operations can be
conducted on these pairs: products, blow-ups and blow-downs, and taking the
graph of a holomorphic function on the subvariety, restricted to the complement of
its divisor. For example the cases described in Sections II.8.2 and II.8.3 can both
be obtained by these operations. The properties of being schön, wunderschön,
and cohomologically tropical should be shellable in this framework. We refer
to [Sch21] for some results in this direction.
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Paper III

Cohomologically tropical arroids,
curve arrangements and
maximality

Edvard Aksnes

III

Abstract

We define arroids as an abstract axiom set encoding the intersection
properties of arrangements of curves. The tropicalization of the complement
of arrangement of curves meeting pairwise transversely is shown to be
determined by the associated arroid. We give conditions for when the
cohomology of the complement of an arrangement is computable using
tropical cohomology, and we give criteria for when the complement is a
maximal variety in terms of tropical geometry.
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III.1 Introduction

Drawing inspiration from matroids, which abstractly axiomatize arrangements
of hyperplanes, we define arroids, which provide a possible abstract axiom set
for the incidence geometry of arrangements of curves in the plane. To any
arrangement of curves, one may associate an arroid. An arroid A consist of an
underlying set A where each element i is equipped with a degree di, along with
a multiset P of subsets of A. Each set p ∈ P is equipped with a multiplicity
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function mp : p2 → Z, and the multiset P must satisfy a Bézout condition in
terms of the multiplicity functions.

When all the multiplicity functions of an arroid are constant taking value
one, the arroid is said to be transversal. We construct a fan associated to
each transversal arroid, and the following theorem shows that such a fan is a
tropical variety, i.e. satisfies the balancing condition of tropical geometry, see
e.g. [BIMS15; MS15] for definitions.

Theorem III.4.6. For each transversal arroid A, there is a fan ΣA, called the
fan of A, which is a balanced tropical variety.

Using transversal arroids, we proceed to study the tropicalization of the
complements of certain types of arrangements of curves. An arrangement of
curves is very affine if it contains at least three lines intersecting generically, and
transverse if all curves of the arrangement intersect pairwise transversely. In
Section III.4.3, we show that for a transverse very affine arrangement of curves,
the tropicalization of the complement is computed by the arroid fan.

Theorem III.4.10. Let B be a transverse very affine arrangement of curves in
the plane P2

K . Then the tropicalization trop(XB) of the complement is supported
on the fan of the associated transversal arroid AB.

For arrangements of lines, Theorem III.4.10 recovers that the tropicalization
of the complement is computed using the rank three matroid of the arrangement
(see e.g. [MS15, Theorem 4.1.11]), using the Ardila–Klivans fan structure
[AK06]. The difficulty in generalizing beyond the transverse case lies primarily
in understanding the resolution of singularities that arise when higher order
intersections are allowed in the arrangement, as was pointed out in [Cue12,
p. 20].

Next, we turn to relating the cohomology of the complement of a very
affine transverse arrangement of curves to the tropical cohomology of the fan
of its associated transversal arroid. For a reminder on tropical cohomology, see
Section III.2.4. For line arrangements and their corresponding matroids, an
isomorphism between the matroid Orlik–Solomon algebra [OS80], computing
cohomology of the complement using only the intersection properties recorded
by the matroid, and tropical cohomology of the matroid fan, was described
by Zharkov [Zha13]. We consider transverse very affine arrangements B of
non-singular rational curves in P2

C, i.e. of lines and conics, such that that no
intersection point of the arrangement contains exactly the same curves. Such an
arrangement will be called simple.

In Proposition III.6.1, we show that the complement of a simple arrangement
is wunderschön in the sense of [AAPS23, Definition 1.2], which is in this context
primarily a restriction on its mixed Hodge structure. In light of [AAPS23,
Theorem 6.1], this implies that the complement of simple arrangements are
cohomologically tropical i.e. its rational cohomology can be computed using
the Q-coefficient tropical cohomology of its tropicalization, if and only if the
corresponding arroid fan is a tropical homology manifold.
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Theorem III.6.2. Let XB be the complement of a simple arrangement B. Then
XB is cohomologically tropical if and only if the corresponding arroid fan ΣAB

is uniquely balanced along each of its rays.

This result follows from equivalent conditions for an arroid fan to be a tropical
homology manifold given in Theorem III.5.4, and we study which conditions this
imposes on curve arrangements in Section III.5.2.

Using Theorem III.6.2, we study the question of maximality for a real
arrangement and its complexification. Let X be a complex variety defined
over R, with X(R) its set of real points and X(C) its set of complex points. The
Smith-Thom inequality gives bounds for the sum of the Z/2Z-Betti numbers as
follows,

b•(X(R)) :=
∑
i≥0

bi(X(R)) ≤
∑
i≥0

bi(X(C)) =: b•(X(C)),

and the variety is maximal if equality is achieved. In [BS22], varieties with
torsion-free cohomology satisfying the stronger inequalities

bi(X(R)) ≤
∑

j

hi,j(X(C))

in terms of the Hodge numbers of their complex parts are called sub-Hodge
expressive. In [RS23], Renaudineau and Shaw studied real algebraic hypersurfaces
near the tropical limit, and gave bounds for Betti numbers in terms of tropical
homology. Recently, [AM22] study the central fiber of a totally real semistable
degeneration over a curve. They give three conditions on the components of the
central fiber for each of the nearby fibers to be sub-Hodge expressive. For each
open component X of the central fiber, the conditions are the following:

(a) Hi(X(R);Z/2Z) = 0 for all i ≥ 1,

(b) X is a maximal variety, and

(c) the mixed Hodge structure on Hi(X(C);Q) is pure of type (i, i) and integer
cohomology is torsion free, for all degrees i.

In light of these conditions, in Theorem III.7.3 we give conditions for the
complement of a simple arrangement of real curves in the plane to be maximal
using its tropicalization. Moreover, using the wunderschön and cohomologically
tropical properties, we give the following concrete construction of varieties
satisfying the above conditions.

Theorem III.7.5. Let B be a simple arrangement of real curves in P2
C, with all

intersection points being real, and such that the tropicalization Trop(XB), which
is supported on the arroid fan ΣAB , is a tropical homology manifold. Then the
following four properties are satisfied:

(a) Hi(XB(R);Z/2Z) = 0 for i ≥ 1,

(b) XB is a maximal variety,
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(c) the mixed Hodge structure on Hi(XB(C);Q) is pure of type (i, i) and
Hi(XB(C);Z) is torsion-free for i ≥ 1, and

(d) dimQ Hi(XB(C);Q) =
∑

j dimQ Hi,j(ΣAB ) for each i ≥ 0.

This theorem is illustrated by providing an infinite family of maximal surfaces
in Example III.7.4, which give examples of the types of variety required in [AM22],
using conditions (a), (b) and (c). Condition (d) can be compared to the bounds
for Betti numbers given in [RS23].

The paper is structured as follows. In Section III.2, we recall the notions
of geometric tropicalization, tropical modifications, and tropical cohomology.
In Section III.3, we illustrate how geometric tropicalization can be used to
compute the tropicalization of the complement of an arrangement of curves in
the plane. In Section III.4, we introduce arroids as an abstract generalization of
arrangements of curves, define fans associated to arroids which are transversal
(see Definition III.4.5), and relate the tropicalization of the complement of an
arrangement to the fan of the associated arroid in the transversal case. Next, in
Section III.5, we study which arroid fans are tropical homology manifolds, and
give some conditions for the arroid fan of an arrangement of lines and conics
to be a tropical homology manifold. Finally, in Section III.7, use the concepts
developed in the rest of the paper to study the maximality of arrangements of
lines and conics.
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III.2 Preliminaries

In this section, we recall certain notions in toric and tropical geometry. For the
remainder of this paper, let K be a trivially valued algebraically closed field.

III.2.1 The intrinsic torus

We recall the definition and properties of the intrinsic torus, following [Tev07;
ST08; HKT09]. For X a variety, let O(X) be its coordinate ring, with group of
units O(X)∗. The group O(X)∗/K∗ is free abelian of finite rank, and the torus
TX := Hom(O(X)∗/K∗, K∗) is called the intrinsic torus of X, with lattice of
characters M = O(X)∗/K∗. Choosing a splitting of the quotient sequence for
M , or equivalently a set of generators, defines a map X → TX , and we say
that X is very affine is this gives a closed embedding. Furthermore, any closed
embedding of a variety into an algebraic torus factors through an embedding to
the intrinsic torus, composed with a monomial map. See [MS15, Section 6.4] for
details.
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III.2.2 Geometric tropicalization

We briefly recall the geometric tropicalization approach to tropicalization. Let
T be an algebraic torus over the field K, with M its lattice of characters and
N := HomZ(M,Z) its dual lattice. Let X ⊂ T be a subvariety and X ′ a normal,
Q-factorial variety birational to X. Any divisor D on X ′ induces a valuation
valD : K(X) → Z on the field of fractions K(X) of X. Such a valuation is called
a divisorial valuation on K(X), and it defines a vector [valD] ∈ NQ by restricting
a character m ∈ M to a rational function m|X ∈ K(X) and evaluating it using
valD.

The following proposition, originally shown in [HKT09, p. 176], with an
alternate proof given in [ST08, Theorem 2.4], characterizes the tropicalization of
X using divisorial valuations.

Proposition III.2.1. The tropicalization Trop(X) is equal to the closure of the
subset

{c[valD] | c ∈ R≥0, valD a divisorial valuation on K(X)} ⊆ NR.

For any compactification X of X ⊆ T by a simple normal crossing divisor
∂X := X ∖ X with irreducible components D1, . . . , Dm, Hacking, Keel and
Tevelev give an explicit construction of Trop(X) as follows (see [HKT09, Theorem
2.3]).

Let ∆∂X be the boundary complex of (X, ∂X), i.e. a simplicial complex with
vertices {1, . . . , m} containing the simplex {i1, . . . , ik} if and only if Di1 ∩· · ·∩Dik

is non-empty. The m divisorial valuations [valD1 ], . . . , [valDm ] give rays in NR,
and for each simplex σ of ∆ we form the cone [σ] := cone([valDi ] | i ∈ σ) in NR.

Theorem III.2.2 ([HKT09, Theorem 2.3]). For X ⊆ T compactified to X by a
simple normal crossing divisor D, we have

Trop(X) = ∪σ∈∆[σ].

Under the assumption of working over a field of characteristic zero, the
condition that the divisor D is simple normal crossing can be weakened to being
merely combinatorial normal crossing, i.e. such that the intersection of any l
irreducible components is of codimension l.

Theorem III.2.3 ([Cue12, Theorem 2.8]). For K a field of characteristic zero and
X ⊆ T compactified to X by a combinatorial normal crossing divisor D we have

Trop(X) = ∪σ∈∆[σ].

Remark III.2.4. The varieties considered in the present paper are surfaces, which
admit resolutions of singularities (see [Stacks, Tag 0BIC]), and as such the proofs
given in [Cue12, Theorem 2.8] carry through even without assuming that the
characteristic of the field K is zero.
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III.2.3 Tropical modifications

We recall generalities on tropical divisors and tropical modifications, see [MR18]
and [AR10] for details. Let ∆′ be a tropical fan of dimension d in Rn with weight
function ω, i.e. satisfying the balancing condition [BIMS15, Definition 5.7]. A
tropical rational function ϕ : ∆ → R is a function so that ∆′ can be subdivided
into ∆ such that, for each cone σ of ∆, the restricted function ϕ |σ is integer
affine, i.e. there is some bσ ∈ R and integer matrix Aσ = (a1, . . . , an) ∈ Z1×n

such that ϕ |σ (x) = Aσ · x + bσ.
For each cone γ of ∆, let LZ(γ) ⊆ N be the (saturated) lattice parallel to

σ. Each facet σ of ∆ is equipped with a weight ω(σ). Since ∆ is tropical, for
each codimension one cone τ , and each facet σ containing τ (using notation
τ ≺ σ) one may find a vector vσ/τ ∈ L(σ) such that LZ(σ) = LZ(τ) + Zvσ/τ

and moreover
∑

τ≺σ ω(σ)vσ/τ = 0. Moreover, one may use ϕ to define a weight
ωϕ(τ) :=

∑
τ≺σ ω(σ)Aσ · vσ/τ . The divisor tropdiv(ϕ) of ϕ on ∆ is the weighted

polyhedral complex whose maximal cones are the codimension one cones τ such
that ωϕ(τ) ̸= 0.

The tropical modification TM(∆, tropdiv(ϕ)) of ∆ along the tropical rational
function ϕ is a fan in Rn+1, with cones that we now describe. For each cone
σ of ∆, let σ̃ := {(x, ϕ(x)) ∈ Rn+1 | x ∈ σ}, and define a weight ω̃(σ̃) = ω(σ).
For each cone τ of tropdiv(ϕ), let τ≥ = {(x, y) ∈ Rn+1 | x ∈ τ, y ≥ ϕ(x)}, with
weight ω̃(τ≥) = ωϕ(τ). The underlying set of TM(∆, tropdiv(ϕ)) is the union

TM(∆, tropdiv(ϕ)) = (∪σ∈∆σ̃) ∪ (∪τ∈tropdiv(ϕ)τ≥).

Using the weights defined above, TM(∆, tropdiv(ϕ)) a balanced polyhedral
complex.

The closed tropical modification CTM(∆, tropdiv(ϕ)) of ∆ along the tropical
rational function ϕ is a polyhedral complex in Rn × (R∪ {∞}), with a cone σ̃ for
each σ ∈ ∆, a polyhedron τ≥ for each cone τ of tropdiv(ϕ), as well as polyhedra at
infinity defined as follows. For each cone τ of tropdiv(ϕ), the corresponding face
at infinity τ∞ is the polyhedron τ∞ = {(x, ∞) ∈ Rn × (R ∪ {∞}) | x ∈ τ}. The
closed tropical modification CTM(∆, tropdiv(ϕ)) is the polyhedrally-decomposed
set

CTM(∆, tropdiv(ϕ)) = (∪σ∈∆σ̃) ∪ (∪τ∈tropdiv(ϕ)τ≥) ∪ (∪τ∈tropdiv(ϕ)τ∞),

where again the weights make CTM(∆, tropdiv(ϕ)) a balanced polyhedral
complex.

III.2.4 Tropical (co)homology

Tropical homology and cohomology, as introduced in [IKMZ19], is an invariant of
a rational polyhedral space. While there are several different approaches, see for
instance [JRS18; JSS19; AP20; AP21; Aks23; AAPS23; GS23], here we briefly
recall the definition of tropical (co)homology as most conveniently defined in the
case of fans.
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Let Σ be a d-dimensional fan in N , with unique minimal 0-dimensional cone
denoted 0. Recall from Section III.2.3 that LZ(σ) ⊆ N is the (saturated) lattice
parallel to σ. For each p = 1, . . . , d, the p-th multi-tangent space is the vector
subspace

Fp(σ) :=
∑
σ≺γ

p∧
LZ(γ) ⊗Z Q ⊆

p∧
N ⊗Z Q,

where the sum is taken over all cones γ of Σ containing σ as a face. Moreover,
for τ a face of the cone σ, there is an inclusion ιτ≺σ : Fp(σ) → Fp(τ) as vector
subspaces.

For a general polyhedral complex ∆, the tropical cohomology groups Hp,q(∆)
are bigraded vector spaces associated to the complex ∆, however when considering
a fan Σ, only the groups Hp,0(Σ) are non-zero, and given by

Hp,0(Σ) = Fp(0) := HomQ(Fp(0),Q),

where 0 is the unique minimal 0-dimensional cone of Σ. Similarly, the tropical
homology groups Hp,q(Σ) of a fan are zero unless q = 0, for which we have
Hp,0(Σ) = Fp(0).

Equip each cone σ with an orientation, and for τ a face of σ, let sign(τ, σ)
be 1 if the chosen orientations of τ and σ are compatible, and −1 otherwise. For
each p = 1, . . . , d, we may define the p-th tropical Borel–Moore complex CBM

p,• (Σ)
as follows

0 ⊕α∈Σd
Fp(α) ⊕β∈Σd−1Fp(β) · · · ⊕ρ∈Σ1Fp(ρ) Fp(0) 0.

∂1∂d ∂d−1 ∂2

The differential ∂k is defined as the sum of its components (∂k)γ,δ : Fp(γ) →
Fp(δ), which is given by sign(δ, γ) · ιδ≺γ if δ is a face of γ, and 0 otherwise. The
tropical Borel–Moore homology group HBM

p,q (Σ) is the q-th homology group of
the complex CBM

p,• (Σ).
For any tropical fan Σ of dimension d, the weight function ω gives rise

to a fundamental class [Σ, ω] ∈ HBM
d,d (Σ), and there are cap product maps

⌢ [Σ, ω] : Hp,q(Σ) → HBM
d−p,d−q(Σ). When these maps are isomorphisms, Σ is

said to satisfy tropical Poincaré duality. If each reduced star Σγ of Σ at a cone γ
satisfies tropical Poincaré duality, including Σ0 = Σ, then Σ is called a tropical
homology manifold. Recall that reduced star Σγ of Σ at a cone γ is the fan in
N/LZ(γ) consisting of the projection of the cones δ of Σ containing γ. Note that
this is sometimes called simply the star in the context of toric geometry, see e.g.
[Ful93, Section 3.1], we make the distinction for compatibility with [Aks23].

III.3 Tropicalizing complements of arrangements of curves

We now turn to arrangements of curves B := {L0, L1, L2, C1, . . . , Cm} in the
plane P2

K , all distinct and irreducible, with equations Ck : fk(x) = 0, where
we include the coordinate axes Li : xi = 0 for i = 0, 1, 2. The complement of
the arrangement in the torus X := P2

K ∖ ∪D∈BD is a very affine variety, and it
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follows from e.g. [HKT09, Lemma 6.1] that its intrinsic torus TX is isomorphic
to (K∗)m+2 generated by the fi and coordinates x1, x2 for (K∗)2 ⊂ P2

K . We
will consider the tropicalization of X as a subvariety of its intrinsic torus.

In [Cue12, Section 5] and [ST08, Proposition 5.3], the following algorithm for
computing the tropicalization of X using geometric tropicalization is presented.
One iteratively blows up the intersection points of curves in the arrangement
until one obtains a combinatorial normal crossing divisor, from which the cones
of the tropicalization are extracted. More precisely, one proceeds as follows:

0. Let B be an arrangement of curves on a surface X, and let X :=
X ∖ ∪D∈B D. Proceed to (1).

1. If there is a point p ∈ X such that p is contained in at least three of the
curves of B, proceed to (2), otherwise proceed to (3).

2. Blow up the point p, replace X by the blown up surface X
′, and replace

the arrangement B with the arrangement B′ := {D′}D∈B ∪ {E} of curves
on X

′, where E is the exceptional divisor of the blow up, and D′ is the
strict transform of D. Note that X ′ := X

′ ∖ ∪C∈B′C is isomorphic to
X ⊂ X, and so replace X with X ′. Return to (1).

3. Since no three curves of B have a common intersection point, we may view
B as a combinatorial normal crossing divisor compactifying X into the
surface X.

Using the above procedure, by Theorem III.2.3 the tropicalization trop(X)
can be equipped with a fan structure consisting of one ray for each element D of
B, and one two-dimensional cone between the rays for D and D′ if these two
curves intersect in S. Moreover note that one may ignore the restriction on the
characteristic of K by Remark III.2.4. Therefore, to complete the description of
the tropicalization trop(X), it remains to find the directions of these rays.

By [HKT09, p. 182], there is a short exact sequence of abelian groups

0 → Pic(X)∨ →
⊕

Di∈∂X

Z · Di → (O(X)∗/K∗)∨ → 0, (III.1)

where the first map is dual to the map Di 7→ [Di] ∈ Pic(X), and the second is
the dual of the map defined on generators by fi 7→ div(fi) = Di. This allows us
to compute the directions of the rays associated to the divisors solely in terms
of the intersection properties of the curves D in B. We illustrate this with the
following examples.

Example III.3.1. Consider the arrangement of curves in P2
K consisting of four

lines given by equations L1 : x = 0, L2 : y = 0, L3 : z = 0, and L4 : x + z − y = 0,
displayed in Figure III.1. The complement X := P2

K ∖ ∪iLi of this arrangement
is compactified to P2

K by the divisor ∂X = ∪iLi, which is already a simple
normal crossing divisor, with boundary complex ∆∂X given by the complete
graph K4.
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L1 L2

L3 L4

L1

L2L3

L4

Figure III.1: Curve arrangement from Example III.3.1 and its boundary complex
∆∂X .

L1

L2L3

C

L̃1

L̃3

L̃2

C̃

E1

E3 E2

Figure III.2: Curve arrangement from Example III.3.2 and the compactifying
divisor.

To compute the tropicalization, it suffices to compute the rays ρi correspond-
ing to each of the irreducible components Li of ∂X. The primitive integer
vector vi along ρi is the image of the basis element ej ∈

⊕
Di∈∂X Z = Z4 un-

der the quotient by Pic(P2
K)∨, which is given by the map (1, 1, 1, 1). Taking

e1 = −e2 − e3 − e4, we obtain a new basis for the quotient space Z4/ Pic(P2
K)∨,

and the rays of the fan Trop(X) are (1, 0, 0), (0, 1, 0), (0, 0, 1) and (−1, −1, −1).

Example III.3.2. Consider the arrangement of curves consisting of the coordinate
axes L1, L2, L3 ⊂ P2

K , as well as the conic C passing through the three points of
intersection Li∩Lj , as shown in Figure III.2. The complement of the arrangement
X := P2

K ∖ (L1 ∪ L2 ∪ L3 ∪ C) is not compactified by a simple normal crossing
divisor in P2

K , so we must blow up the three points Li ∩ Lj . This yields a
configuration including three exceptional divisors E1, E2 and E3, also displayed
in Figure III.2.

Blowing up the plane in the three points P2
K to compactify X into X yields

the Picard group Pic(X) ∼= ⟨H⟩ ⊕3
i=1 ⟨ej⟩, where H is the pullback of the line
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class in Pic(P2
K). Moreover, the boundary ∂X consists of seven curves, and the

intrinsic torus O(X)∗/K∗ is of dimension three. The short exact sequence from
(III.1) is then

0 → ⟨H⟩ ⊕3
i=1 ⟨ej⟩ ϕ−→ ⊕3

i=1⟨L̃i⟩ ⊕ ⟨C̃⟩ ⊕3
i=1 ⟨ej⟩ π−→ O(X)∗/K∗ → 0,

where the lattice map ϕ is given by the matrix

1 0 −1 −1
1 −1 0 −1
1 −1 −1 0
2 −1 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1


.

To compute the rays corresponding to each divisor D of the boundary ∂X, we
consider O(X)∗/K∗ as the cokernel of ϕ under the quotient map π. Somewhat
abusing notation, each column yields a relation in O(X)∗/K∗ as follows

π(E1) = π(L̃2) + π(L̃3) + π(C̃)
π(E2) = π(L̃1) + π(L̃3) + π(C̃)
π(E3) = π(L̃1) + π(L̃2) + π(C̃)

as well as the equality

π(L̃1) + π(L̃2) + π(L̃3) + 2π(C̃) = 0.

In particular, the rays of the fan corresponding to the divisors are given by the
columns of the following matrix−1 1 0 0 1 −1 0

−1 0 1 0 1 0 −1
−2 0 0 1 1 −1 −1

 ,

and embedding the dual complex ∆∂X as the cone over these rays, we observe
that multiple of the rays are contained inside a two-dimensional face, and we
are left with only the four rays−1 0 0 1

0 −1 0 1
−1 −1 1 1

 ,

which gives a fan with support equal to the tropicalization of X.
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III.4 Axioms for abstract arrangements of curves

In light of the description of the tropicalization of an arrangement of curves in
Section III.3, we now propose an axiomatization generalizing arrangements of
curves. We show that for a given arrangement, the axiomatization data extracted
from the arrangement is sufficient to compute its tropicalization in its intrinsic
torus.

III.4.1 Axioms

Let A := {1, . . . , n} be a finite set, called the ground set or divisors. Let r be
an integer, either 1 or 2, called the (reduced) rank. There is a degree function
d : A → Z>0, and for each element i ∈ A, we will use the notation di := d(i). Let
P be a multiset of subsets of A, called the points. Each point p ∈ P is equipped
with an intersection multiplicity function mp : pr → Z, which is such that

• for (i1, . . . , ir) ∈ pr a vector, there are bounds 1 ≤ mp(i1, . . . , ir) ≤
maxk∈{i1,...,ir}(dk), and

• mp is invariant under permutation of the coordinates.

The multiset of points P satisfies the Bézout property if for all vectors
(i1, . . . , ir) ∈ Ar, there are exactly di1di2 · · · dir

points of P containing
{i1, . . . , ir}, when counting with intersection multiplicity, i.e.∑

p⊇{i1,...,ir}

mp(i1, . . . , ir) = di1di2 · · · dir ,

where the sum is taken over all points p ∈ P. Let m := {mp | p ∈ P} denote
the set of multiplicity functions associated to P.

Definition III.4.1. An arroid is a tuple (A, d, P, m) satisfying the Bézout property.

The data contained in an arroid of rank two records the intersection properties
of an arrangement of curves in the plane. More generally, any loop-free rank
three matroid gives rise to a rank two arroid, as shown in the following example.

Example III.4.2. Let M be a loop-free matroid of rank three on a ground set
E := {1, . . . , n}, with rank function r : 2E → N. We construct an arroid A as
follows. The ground set A of A is taken to be E, equipped with the degree
function d taking constant value 1. The multiset of points P of this arroid is
exactly the set of rank two flats of the matroid, where the multiplicity functions
are also constant of value 1. For the Bézout property take a pair (i, j) of elements
in the ground set, and note that since M is loop-free, {i} is a flat. By the flat
partition property, there is exactly one rank three flat containing j, thus there is
exactly one rank three flat, i.e. point of the arroid, containing {i, j} as required.

For more general examples, consider the following:
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L1

L2L3

C

Figure III.3: Curve arrangement from Example III.4.4.

Example III.4.3. We return to Example III.3.2. Let A = {1, 2, 3, 4}, where
i = 1, 2, 3 corresponds to the line Li, and 4 corresponds to the conic C. The
degree function d : A → Z>0 is given by di = 1 for i < 4 and d4 = 2. The
multiset of points is P = {{1, 2, 4}, {1, 3, 4}, {2, 3, 4}}, corresponding to the set
of intersection points of the lines and conic. The Bézout property of P follows
directly from the Bézout theorem for P2

K .

Example III.4.4. Consider now the generic arrangement of three lines and a
conic displayed in Figure III.3. As before, let A = {1, 2, 3, 4}, where i = 1, 2, 3
corresponds to the line Li, and 4 corresponds to the conic C, with the degree
function d : A → Z>0 given by di = 1 for i < 4 and d4 = 2. The multiset
structure of the points is now more evident as

P = {{1, 2}, {1, 3}, {2, 3}, {1, 4}, {1, 4}, {2, 4}, {2, 4}, {3, 4}, {3, 4}},

which reflects that each pair of lines meets in a single point, and the conic meets
each line in two points.

In general, given an arrangement of curves B = {C1, . . . , Cn} on P2
K , we can

create an arroid of rank two as follows. Let A := {1, . . . , n} and the function
d takes i to the degree of the curve di. For any subset p ⊆ B such that
CI = ∩i∈I Ci ̸= ∅, let pI1 , . . . , pIk

be the components of CI . For each pIj
,

we include p as an element in P with multiplicity function mp given by the
intersection multiplicities of the curves at the component pIj

. Thus the point p
may appear multiple times with potentially different multiplicity functions. We
denote the arroid of an arrangement B by AB.

An arroid of rank one should be viewed as formalizing the process of restricting
an arrangement of curves to considering the points of the arrangement on one
of the given curves, while recording exactly which curves pass through a given
point. In fact we may formalize this in the notion of an arroid contraction,
contracting a rank r = 2 arroid to a rank r = 1 arroid. Let A = (A, d, P, m) be
a rank 2 arroid, and i ∈ A a divisor. The contraction A/i of A is the arroid
A/i := (A∖{i}, d/i, P/i, mA/i), where d/i(j) := di ·d(j), and P/i is the multiset
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{p ∖ {i} | i ∈ p}p∈P . The multiplicity functions, now of rank r = 1, are the
function

m
A/i
p∖{i} : p ∖ {i} → Z

given by mapping an element j ∈ p ∖ {i} to mp(i, j), i.e. using the multiplicity
function of the original points p. The Bézout condition for A/i follows from
that for A.

Furthermore, in the context of arrangements of curves, one may always
consider the arrangement obtained by removing one of the curves. In the arroid
context, we generalize this notion in the form of an arroid deletion. The deletion
A ∖ i of and arroid A is the arroid A ∖ i := (A ∖ {i}, d, P ∖ i, mA∖i), where d
takes the same values as for d of A, and P ∖ i is the multiset consisting of the
points p of P not containing i, as well as points p ∖ {i} where p ̸= {i, j} for
some j ∈ A. Since each point q of A ∖ i corresponds to a specific point p of A,
we define the multiplicity function

mA∖i
q : q2 → Z

as given by mA∖i
q (j, k) = mA

p (j, k) for all j, k ∈ q.
Finally, we describe a certain type of arroid, which is inspired by the case of

an arrangement of curves where all the curves intersect pairwise transversely.

Definition III.4.5. A transversal arroid is an arroid such that for all p ∈ P, the
intersection multiplicity mp is constant taking value 1.

Note that the arroid deletion of a transversal arroid is itself transversal.

III.4.2 The fan of a transversal arroid

Let A = (A, d, P, m) be a transversal arroid. We will now construct a weighted
rational polyhedral fan ΣA ⊂ R|A|/⟨(d1, . . . , dn)⟩ associated to a transversal
arroid. This is inspired by the construction of the Bergman fan as the cone over
the order complex of matroids as done in [AK06]. Let [w] denote the class in
R|A|/⟨(d1, . . . , dn)⟩ of the vector w ∈ R|A|, and e1, . . . , en be the standard basis
of R|A|. Denote by Pu the underlying set of the multiset P, i.e. discarding the
number of occurrences of each point p ∈ P and recording it only once in Pu.

First consider A an arroid of rank one, and let ΣA ⊂ R|A|/⟨(d1, . . . , dn)⟩ be
the following weighted one-dimensional rational polyhedral fan. For each point
p ∈ Pu, let vp :=

∑
j∈p[ej ] be a ray of ΣA. The weight function ω : Σ1 → Z is

defined by taking vp to w(p), where w(p) is the number of times p is repeated
in the multiset P . This fan is tropical, in the sense that it satisfies the balancing
condition in codimension one [BIMS15, Definition 5.7], as we have∑

p∈Pu

ω(p)vp =
∑
p∈P

∑
j∈p

[ej ] = [
∑
j∈A

∑
p∈P
j∈p

ej ] = [
∑
j∈A

djej ] = 0,

where we used the Bézout property and the transversality to conclude that∑
j∈p 1 = dj .
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Now we turn to arroids A of rank two. For each divisor i ∈ A, the cone
ρi := cone([ej ]) is a ray of ΣA. For each point p ∈ Pu, the cone ρp := cone(vp),
with vp :=

∑
i∈p[ej ], is also a ray of ΣA. The two-dimensional cones of ΣA

are the following. For each pair i ∈ A and p ∈ P with i ∈ p, there is a two-
dimensional cone σi,p := cone(ρi, ρp) in ΣA. The weight function ω : Σ2 → Z is
defined by taking σi,p to w(p), where w(p) is the number of times p is repeated
in the multiset P.

This fan is also tropical. Now we must verify balancing at each ray. There
are two types of rays to verify: the ρp and the ρi. Picking a ray ρp, we must
verify that the sum

∑
σi,p≻ρp ω(σi,p)vσi,p/ρp is a vector contained in ρp, where

vσi,p/ρp together with the primitive vector vp of ρp generates σi,p. One such
vσi,p/ρp is precisely [ej ], the primitive vector of ρi, and so we have∑

σi,p≻ρp

ω(σi,p)vσi,p/ρp =
∑
i∈p

w(p)[ej ] = w(p)[
∑
i∈p

ej ] = w(p)[vρ],

which is contained in ρp. The balancing condition for the rays ρi follows by
using the Bézout condition in the following manner. Picking a ray ρi, we must
verify that the sum

∑
σi,p≻ρi

ω(σi,p)vσi,p/ρi
is a vector contained in ρi, where

vσi,p/ρi
together with the primitive vector [ej ] of ρi generates σi,p. We pick

vσi,p/ρi
= [vp], then∑

σi,p≻ρi

ω(σi,p)vσi,p/ρi
=
∑
p∋i

p∈Pu

w(p)[vp] =
∑
p∋i
p∈P

[
∑
j∈p

ej ] =
∑
j∈A
j ̸=i

∑
p⊃{i,j}

p∈P

[ej ] +
∑
p∋i
p∈P

[ej ].

Now by the Bézout condition, each vector ej ̸= ei appears exactly didj times, so
the first term is equivalent to a multiple of [ei] in the quotient R|A|/⟨(d1, . . . , dn)⟩.
This implies in particular that the whole sum is equal to some multiple of [ei],
and hence contained in ρi.

By the above constructions, we have associated a fan ΣA for each transversal
arroid A, which we call the arroid fan of A. Moreover, taking all the balancing
properties into account, we have proven the following.

Theorem III.4.6. For each transversal arroid A, the arroid fan ΣA is a balanced
tropical variety.

Remark III.4.7. It follows from the above construction that the fan of a
transversal arroid of rank one or two is necessarily connected through codimension
one in the sense of [MS15, Definition 3.3.4].

Furthermore, we describe the reduced star at the rays of the fan ΣA an arroid
A of rank two in terms of arroid fans.

Proposition III.4.8. Let ΣA be an arroid fan, and i ∈ A correspond to the ray ρi

of ΣA. Then the reduced star ΣA
ρi is equal to the arroid fan ΣA/i of the arroid

contraction A/i.

Proof. This follows by considering both definitions. The fan ΣA/i is contained in
the associated space R|A∖{i}|/⟨(d1, . . . , d̂i, . . . , dn)⟩, which can also be viewed as
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the space (R|A|/⟨(d1, . . . , dn)⟩)/⟨ei⟩ that contains ΣA
ρi . Moreover, the cones of

both these fans correspond exactly to the projection of the cones of Σ containing
ρi, i.e. the points p ∈ P containing i. ■

Next, we show that the fan of a transversal arroid may be constructed
inductively using tropical modifications along any of its arroid deletions. This is
inspired by the construction of the Bergman fan of a matroid through tropical
modifications described in [Sha11, Proposition 1.1.34], as well as the shellability
property in [AP21].

Proposition III.4.9. Let A = (A, d, P, m) be a transversal arroid, and A ∖ i one
of its arroid deletions. Then ΣA = TM(ΣA∖i, ΣA/i) is a tropical modification of
the fan of the arroid deletion A ∖ i along the fan of the arroid contraction A/i.

Proof. We will show that the preimage of a point in the fan ΣA under the
coordinate projection π : R|A|/⟨(d1, . . . , dn)⟩ → R|A∖i|/⟨(d1, . . . , d̂i, . . . , dn)⟩ is
either a half-line in the ei direction, or a point. Then one may obtain a piecewise
integer affine function g defining the tropical modification by taking g(p) = π−1(p)
for the points p ∈ ΣA∖i whose preimage π−1(p) are single points.

To show that π−1(p) is either a point or half-line in ΣA, we analyze the cones
of the latter. The cones of ΣA have one of three forms:

• cone(ej , ej+ei) for some j ∈ A, corresponding to a point p which disappears
in A ∖ i,

• cone(ej , ea + ei), corresponding to a point p = a ∪ i ∈ P from which i is
removed in A ∖ i, or

• cone(ej , ep) for some p ∈ P not containing i.

Any point p of the fan ΣA∖i is contained inside cone(ek, ep) for some k and
p ∈ P ∖ i with k ∈ p. We distinguish multiple cases:

• If p = 0 is the origin, then π−1(p) = cone(ei) is a half-ray of the fan ΣA.

• If p = αek + βep with α, β > 0, and p ∪ {i} is a point of A, the preimage
π−1(p) is p′ = αej + β(ep + ei) in ΣA.

• If p = αek then either {i, k} ∈ P, and then π−1(p) = {aej + b(ej + ei) |
a + b = α; a, b ≥ 0} is a half-ray or {i, k} ̸∈ P and then π−1(p) = αek.

• If p = βep then either p ∪ {i} is a point of A, and the preimage is a
half.line, or it is not so that π−1(p) = βep.

For any of p, the fiber is either a half-line or a point, and thus ΣA is a tropical
modification of ΣA∖i.

Moreover, it follows from the construction that the divisor along which
the modification is performed is the reduced star ΣA

ρi , which is ΣA/i by
Proposition III.4.8, so that we have ΣA = TM(ΣA∖i, ΣA/i). Moreover, the
weights of ΣA are then given in terms of the weights of the rays of ΣA/i, which
is compatible with the construction of both fans as above. ■
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III.4.3 Tropicalization

We now show that the data gathered in the transversal arroid of an arrangement
of curves is sufficient to compute its tropicalization. It is in fact sufficient to
note that, all the data used in the description of the tropicalization given in
Section III.3 is recorded in the arroid. Our aim is instead to show that, for
an arrangement where all intersections are transverse, the fan described in
Section III.4.2 is a fan structure on the tropicalization of the arrangement.

First, to insure that the arrangement of curves B in the plane P2
K is in fact

very affine, we suppose that it contains at least three lines intersecting generically,
so that they can be mapped to the coordinate axes by a projective transformation.
We will say that such an arrangement is very affine. If all the curves intersect
pairwise transversely, we will say that the arrangement B is transverse. In this
case, the associated arroid is transversal because the multiplicity functions at
each point of the arroid AB is given by the intersection multiplicities of the
curves of B at the corresponding point. Since all the curves intersect pairwise
transversely, the multiplicity function mp is constant of value 1, hence the arroid
is transversal.

Theorem III.4.10. Let B be a transverse very affine arrangement of curves in
the plane P2

K . Then the tropicalization trop(XB) of the complement is supported
on the fan of the associated transversal arroid AB.

Proof. We show that the arroid fan is supported on the tropicalization of the
complement of the arrangement. Blowing up P2

K in any point where more than
3 of the curves in B meet, we obtain a simple normal crossing divisor D which
compactifies the complement XB := P2

K ∖ ∪C∈B C. Therefore, using the map
to the intrinsic torus, Theorem III.2.2 gives us that the tropicalization is equal
to the fan whose rays are cone([valD]) in NR for each irreducible component D
of the simple normal crossing divisor D, and whose two-dimensional cones are
cone([valD], [valD′ ]) for boundary divisors D and D′ such that D ∩ D′ ̸= ∅.

There are two types of irreducible components of D: the strict transforms
of the curves C in B, whose divisorial valuations are such that the associated
vectors [valC ] is a standard basis vector of NR, and the exceptional divisors
E of the blown-up loci p, for which the valuation valE computes the order of
vanishing at p. Therefore, the vector [valE ] is the sum

∑
ik

[valDik
] for the Dik

which intersect at p. In particular, it follows from this description of the rays
that the tropicalization is exactly equal to the fan of the arroid AB. ■

It follows from the definitions that, given the arroid A of an arrangement
of curves B, and considering the arrangement obtained by removing one of the
curves, say numbered i, from the arrangement B, the corresponding arroid will
be the deletion A ∖ i.
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III.5 Tropical homology manifold arroid fans

In this section, we study when a transversal arroid fan is a tropical homology
manifold. We will first show that all tropical Borel–Moore homology of a
transversal arroid fan is concentrated in top degree, and hence torsion-free.
Then we will use an Euler characteristic argument to show that being a tropical
homology manifold reduces to a balancing condition. This property is a main
component in understanding when the complement of an arrangement of curves
is cohomologically tropical, see Theorem III.6.2.

III.5.1 Tropical cohomology of transversal arroid fans

For a transversal arroid, the main structural result is that the tropical Borel–
Moore homology of the associated fan is concentrated in top-degree. More
precisely, we have the following lemma.

Lemma III.5.1. Let A be a transversal arroid. Then HBM
p,q (ΣA) = 0 for q ̸= 2,

for all p.

Proof. By Proposition III.4.9, each arroid fan ΣA is the tropical modification
of any of its deletions, by adding a divisor to the ground set. Hence it suffices
to show that the property holds for the modification of an arroid fan. Let ΣA
be an arroid fan, and TM(ΣA, tropdiv(ϕ)) a modification of ΣA. As pointed
out in the proof of [JRS18, Proposition 5.5], there is a short exact sequence of
complexes

0 → CBM
p,• (tropdiv(ϕ)) → CBM

p,• (CTM(ΣA, tropdiv(ϕ)))
→ CBM

p,• (TM(ΣA, tropdiv(ϕ))) → 0,

and moreover, by Lemma III.5.3, the long exact sequence in homology takes the
form

· · · → HBM
p,q (tropdiv(ϕ)) → HBM

p,q (ΣA) → HBM
p,q (TM(ΣA, tropdiv(ϕ)))

→ HBM
p,q−1(tropdiv(ϕ)) → · · · .

By induction we have HBM
p,q (ΣA) = 0 for q ̸= 2, and similarly

HBM
p,q (tropdiv(ϕ)) = 0 for q ̸= 1, since tropdiv(ϕ) is one-dimensional. Therefore

the result follows by exactness. ■

Lemma III.5.2 ([Sha11, Lemma 2.2.7]). Let Σ ⊆ Rn be a tropical fan,
and TM(ΣA, tropdiv(ϕ)) its tropical modification along the tropical divisor
tropdiv(ϕ). Then for each p = 1, . . . , dim Σ, we have short exact sequences

0 Hp−1,0(tropdiv(ϕ)) Hp,0(TM(Σ, tropdiv(ϕ))) Hp,0(Σ) 0,
γ δ

0 Hp,0(Σ) Hp,0(TM(Σ, tropdiv(ϕ))) Hp−1,0(tropdiv(ϕ)) 0,δ∨ γ∨

dual to each other, where γ is the map w 7→ w ∧ en+1 and δ is v 7→ π(v), for
π : Rn+1 → Rn the projection onto the first n components.
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Proof. The [Sha11, Lemma 2.2.7] is stated for tropical modifications of matroid
fans, however the proof is applicable to this more general context. ■

Lemma III.5.3. Let Σ ⊆ Rn be a tropical fan, and CTM(ΣA, tropdiv(ϕ))
its closed tropical modification along the tropical divisor tropdiv(ϕ). Then
HBM

p,q (ΣA) ∼= HBM
p,q (CTM(ΣA, tropdiv(ϕ))) for all p and q.

Proof. The [JRS18, Lemma 5.7] holds for arbitrary tropical modifications by
Lemma III.5.2, and thus the proof given for [JRS18, Proposition 5.6] generalizes
to the present context. ■

Note that the above strategy is applicable also in the case of Z-coefficients
for tropical homology, which shows that there is no torsion in the tropical Borel–
Moore homology of the fan of a transversal arroid. Moreover, it follows that the
fan of a transversal arroid is a tropical homology manifold if and only if it is
uniquely balanced along each ray.

Theorem III.5.4. Let ΣA be the arroid fan of a transversal arroid. Then ΣA is a
tropical homology manifold if and only if it is uniquely balanced along each of its
rays.

Proof. By Lemma III.5.1, the tropical Borel–Moore groups are such that
HBM

p,q (ΣA) = 0 for q ̸= 2, for all p. Moreover, for each cone γ of Σ, the reduced
star fan Σγ has HBM

p,q (Σγ) = 0 for q ̸= 1, for all p, since Σγ is one-dimensional.
Therefore, the result follows by [Aks23, Theorem 5.10]. ■

Finally, we conclude with an argument showing that for arroids, the deletion
operation preserves the tropical homology manifold property of the fan.

Lemma III.5.5. Let A be a transversal arroid such that the arroid fan ΣA is a
tropical homology manifold. Then for any arroid deletion A∖i, the corresponding
arroid fan ΣA∖i is a tropical homology manifold.

Proof. Since ΣA is a tropical homology manifold, the reduced star along the ray
corresponding to i, which by Proposition III.4.8 is the arroid fan ΣA/i of the
contraction A/i, satisfies Tropical Poincaré Duality. By Proposition III.4.9, we
have that ΣA = TM(ΣA∖i, ΣA/i), so that for each p = 0, 1, 2, [JRS18, Diagram
5.6] takes the form

0 Hp,0(ΣA∖i) Hp,0(ΣA) Hp,0(ΣA/i) 0

0 HBM
2−p,2(ΣA∖i) HBM

2−p,2(ΣA) HBM
2−p,2(ΣA/i) 0.

⌢[ΣA∖i] ⌢[ΣA/i]⌢[ΣA]

By assumption both the middle and rightmost vertical arrows are isomorphisms,
and therefore so is the leftmost vertical arrow. Therefore ΣA∖i satisfies tropical
Poincaré duality, and so it remains to show that each reduced star ΣA∖i

γ of a
cone γ ∈ ΣA∖i satisfies tropical Poincaré duality. In light of Lemma III.5.1, the
result follows by applying [Aks23, Proposition 5.7]. ■
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Figure III.4: A line with three clusters

III.5.2 Unique balancing of arroid rays

We now begin a preliminary investigation into when the rays of an arroid fan are
uniquely balanced. In light of Theorem III.5.4, establishing such conditions would
be equivalent to describing which arroid fans are tropical homology manifolds.

Note that the rays ρp corresponding to a point are always uniquely balanced.
This follows since the equality ∑

i∈p
αi[ei] = α[νρ]

holds if and only if α = αi for all i, where νρ =
∑

j∈p ej . Therefore the only
balancing along such an edge is given by the weight w(p) for each facet containing
ρp, as in Section III.4.2.

By the above, the only rays of an arroid fan for which unique balancing may
fail, are the rays ρi corresponding to divisors i ∈ A. For such a ray, a balancing
corresponds to a set of weights αp for each p containing i, such that the equality∑

p∋i

αp[νρ] = α[ei] (III.2)

holds, where the sum is taken over the set of unique points Pu. Using the
balancing already exhibited in Section III.4.2, we may increment both sides such
that αp ≥ 0 for all p.

We will now describe conditions on an arrangement of lines and conics which
guarantee the unique balancing property along the rays corresponding to the
lines. We begin with a certain connectedness notion for arrangements.

Definition III.5.6. Let B be a transverse very affine arrangement of curves in
P2

K , and C a curve of the arrangement. A cluster of curves C ⊂ B on C
is a set of curves that for any two curves Ca, Cb ∈ C, there is a sequence
Ca = C1, C2, . . . , Cm = Cb such that Ci ∩ Ci+1 contains a point of C.

Example III.5.7. Figure III.4 displays an arrangement where, for the line f , the
sets of clusters are {e, c, d}, {k, h, i} and the singleton {g}. The set {g, d} is not
a cluster for f .

A cluster may be a subset of another cluster, giving an ordering. For a chosen
curve C, we may divide the points of the arrangement on C into the maximal
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clusters in which they are intersection points. For a line L in an arrangement
of lines and conics, the following condition on the clusters of L implies unique
balancing of the corresponding ray of the arroid fan.

Lemma III.5.8. Let B be a transverse very affine arrangement of lines and conics
in P2

K , and let A be the arroid of the arrangement. Let i ∈ A be a divisor
corresponding to a line L. Suppose that each cluster of L contains a line. Then
the arroid fan ΣA is uniquely balanced along the ray ρi.

Proof. We will show that for any cluster, the coefficients αp are all equal, for any
point p on L of the cluster. For each cluster, let pℓ be the point on L containing
the line, and αpℓ

the corresponding coefficient in equation (III.2). Now for any
of the conics C passing through this point, the Bézout condition, along with
balancing implies that the other intersection point p′ of C with L must have
coefficient αp′ = αpℓ

. By iterating through all pairs in the cluster, all coefficients
of the points of the cluster are equal. Moreover, as this is true for all clusters of
L, the balancing condition forces the coefficients of different clusters to be equal,
making the balancing unique. ■

The unique balancing of rays associated with conics is seemingly more subtle.
We first introduce specific types of clusters, from which we derive coarse criterion
for unique balancing to occur.

Definition III.5.9. Let B be a transverse very affine arrangement of lines and
conics in P2

K , and C a conic of the arrangement. A conic C ′ of a cluster C
is a source if all four points of C ′ ∩ C are joined by at least five lines of the
arrangement, and it called a reservoir if it is joined by at least four. For C ′′

another conic of the cluster, an aqueduct on C between C ′ and C ′′ is a line L of
the arrangement joining a pair of intersection points in C ′ ∩ C and C ′′ ∩ C. A
cluster containing at least one source conic, with all other conics being reservoir
conics, with a chain of aqueducts linking back to the source, is called a balancing
supply system.

The sense in the above naming is that, for a source, all weights αp of the
associated intersection points must be equal. If an aqueduct connects a source to
a reservoir, then the weights of the intersection points at the reservoir must be
equal to that of the source, and this equality is then spread further to all other
reservoirs linked by aqueducts; i.e. if a cluster is a balancing supply system, all
the weights of any balancing are equal.

Example III.5.10. In Figure III.5, we consider the conic C, which has a unique
maximal cluster, comprised of all the lines together with the two additional
conics C ′ and C ′′. Here C ′ is a source, C ′′ is a reservoir, and the line L is an
aqueduct. Therefore the unique maximal cluster is a balancing supply system.

Lemma III.5.11. Let B be a transverse very affine arrangement of lines and
conics in P2

K , and let A be the arroid of the arrangement. Let i ∈ A be a divisor
corresponding to a conic C. If all maximal cluster of C contain conics and are
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Figure III.5: A conic with balancing supply cluster

balancing supply system, then the arroid fan ΣA is uniquely balanced along the
ray ρi.

Proof. We follow the strategy of weight propagation suggested above. Let C be
a maximal cluster, and C ′ a source. Since the arrangement is transverse, there
are four intersection points p1, p2, p3 and p1 in C ∩ C ′, and given that there
are 5 lines passing through these points, they yield four distinct terms αp[νp] in
the left hand sum (III.2). The balancing condition implies that the αp must all
be equal, as otherwise the vectors [ej ] corresponding to the lines do not appear
an equal number of times. Next, let C ′′ be a reservoir, and p ∈ C ′′ ∩ C a point
where there is an aqueduct L between C ′ and C ′′. Then if the weights αpi = α
are fixed, since the coordinate [eL] must appear 2α times, we have that αp = α
as well. Then for the same reason, lines passing through two intersection points
of C ′′ ∩ C have components appearing 2α times, thus all points of C ′′ ∩ C must
have the same weight. This reasoning will then also apply to any other reservoir
connected to C ′′ by an aqueduct, and therefore the weights of all points in a
cluster which is a balancing supply system are equal. Moreover, the balancing
condition implies that the weights of two distinct clusters must agree. Therefore
there is a unique balancing along the ray ρi. ■

For a transverse very affine arrangement of lines and conics B, a straightfor-
ward condition for all the maximal clusters of a conic C to be balancing supply
systems, is simply that for any two other conics C ′ and C ′′, all possible lines
between points in C ′ ∩ C and C ′′ ∩ C are part of the arrangement.

III.6 Cohomologically tropical arrangements

In this section, we study two properties of transverse very affine arrangements
of curves. First, we show that under certain conditions, the complement of the
arrangement is wunderschön in the sense of [AAPS23, Definition 1.2], which
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is primarily a restriction on the Mixed Hodge structure of the cohomology of
this complement and of the involved curves. Next we use the study of arroid
fans which are tropical homology manifold as discussed in Section III.5, to show
that for certain arrangements, the complement is cohomologically tropical in the
sense of [AAPS23, Definition 1.1], i.e. that one may compute all the cohomology
of the complement using only the tropical variety.

Let B be a transverse very affine arrangement of curves in the plane P2
C, and

XB its complement, which we identify as a subvariety of its intrinsic torus TXB .
The associated arroid A = AB then yields the tropicalization of XB ⊆ TXB as
the support of the arroid fan ΣA.

Proposition III.6.1. Let B be a transverse very affine arrangement of non-singular
rational curves in P2

C such that no intersection point of the arrangement contains
exactly the same curves, then XB is a wunderschön variety.

Proof. Consider the toric variety CPΣA associated to the (unimodular) fan ΣA
and the closure XB ⊆ CPΣA . Each cone σ of ΣA gives a torus orbit Tσ ⊆ CPΣA ,
and let Xσ

B := XB ∩ Tσ. To show that XB is wunderschön, we must first show
that each Xσ

B is non-singular.
For the minimal cone 0 of ΣA, corresponding to the central vertex, X0

B is
the complement of the curves of B, hence is non-singular. For a ray ρi of ΣA
corresponding to a divisor i ∈ A of the arroid, the intersection Xρi

B is the curve
of B corresponding to i, which is non-singular. For a ray ρp corresponding to a
point p ∈ P of the arroid, the intersection X

ρρ

B is the exceptional curve of the
blow-up at the corresponding point, which is also non-singular. Moreover for each
cone σi,p = cone(ei, ep) of ΣA, since no intersection point of the arrangement
contains exactly the same curves, the intersection X

σi,p
B is the intersection of the

exceptional curve corresponding to p with the curve corresponding to i, which
is exactly one point, hence non-singular.

Next, to show that XB is wunderschön, we must verify that for each Xσ
B ,

the mixed Hodge structure on Hk(Xσ
B) is pure of weight 2k. This follows for

the two-dimensional cones from the assumption on points, and follows for each
one-dimensional cone as it corresponds to a punctured non-singular rational
curve. Finally, for X0

B = XB, we consider Deligne’s weight spectral sequence for
the mixed Hodge structure [Del71, §7]. All the homology of XB is generated by
that of P2

C together with that of the exceptional divisors of the blown-up points.
Therefore, there is no odd degree cohomology of XB, and since all the boundary
divisors are rational, all odd rows of the spectral sequence are identically zero.
Then it remains to show that the cohomology of the following two complexes,
corresponding to the only non-zero even rows of the weight spectral sequence, is
concentrated on the left

0 ⊕p H0(p) ⊕D H2(D) H4(XB) 0,

0 ⊕D H0(D) H2(XB) 0.
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Here the D’s are the components of the boundary divisors compactifying XB to
XB, and the p’s correspond to their pairwise intersections. Since the dual graph of
the compactifying divisor is connected, the top complex only has cohomology on
the left by [Hac08, Theorem 3.1]. Moreover, the homology H2(XB) is generated
by the homology of P2

C along with the homology of the exceptional divisors of the
blown-up points [GH94, p. 474], so the map in the lower complex is surjective,
and gives the cohomology GrW

2 H2(XB) = 0. We therefore have GrW
i Hk(XB) is

0 if i ̸= 2k, i.e. the mixed Hodge structure is pure of weight 2k. ■

A transverse very affine arrangements B of non-singular rational curves
in P2

C, i.e. of lines and conics, such that that no intersection point of the
arrangement contains exactly the same curves, will be called simple. For simple
arrangements, we relate the rational cohomology of their complements with the
tropical cohomology of their tropicalizations, using the notion of cohomologically
tropical varieties.

We give a brief description of the cohomologically tropical property for
varieties and their tropicalizations, referring to [AAPS23] for the original
definition and greater details. For X ⊆ T a subvariety of a torus, and Trop(X)
its tropicalization, picking a unimodular fan Σ supported on Trop(X) yields a
compactification X of X inside the toric variety CPΣ, as well as a compactification
Trop(X) of Trop(X) inside the tropical toric variety TPΣ. There is a map
τ∗ : H•(Trop(X)) → H•(X), relating the Q-coefficient tropical cohomology of
Trop(X) to the rational cohomology ring of X (see [AAPS23] for more on this
map). This map can also be defined for each of the reduced stars and the
corresponding projections of the variety X. If all these maps are isomorphisms,
X is said to be cohomologically tropical. For simple arrangements, we have the
following result regarding which have cohomologically tropical complements.

Theorem III.6.2. Let XB be the complement of a simple arrangement B. Then
XB is cohomologically tropical if and only if the corresponding arroid fan ΣAB

is uniquely balanced along each of its rays.

Proof. By Proposition III.6.1, this complement is necessarily wunderschön.
Therefore, the equivalence described in [AAPS23, Theorem 6.1] reduces to
an equivalence between XB being cohomologically tropical and trop(XB) =
ΣAB being a tropical homology manifold. The result then follows from
Theorem III.5.4. ■

III.7 Maximal subvarieties

In this section, we will study the question of maximality for arrangements of
curves using the arroid abstraction we have developed so far. Let X be a complex
subvariety of P2

C defined over R, with X(R) its set of real points and X(C) its
set of complex points. The Smith-Thom inequality gives bounds for the sum of
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the Z/2Z-Betti numbers bk as follows,

b•(X(R)) :=
∑
k≥0

bk(X(R)) ≤
∑
k≥0

bk(X(C)) =: b•(X(C)).

The variety X is said to be maximal if equality holds. For a simple arrangement
B of curves, i.e. consisting of lines and conics, defined over the reals, with all
intersections being real, we will now use tropical homology manifolds to give a
condition for maximality of the complement of the arrangement. Along with the
two next lemmas, this will give examples of varieties satisfying conditions (a),
(b) and (c) of [AM22, p. 3], as described in the introduction.

Lemma III.7.1. Let B be an arrangement of curves containing at least one line
in P2

C, and XB its complement. Then the homology groups H1(XB(C);Z) and
H2(XB(C);Z) are torsion-free, and Hk(XB(C);Z) = 0 for k > 2.

Proof. Since the arrangement contains at least one line, it is affine, therefore
the homology group H1(XB) is torsion-free, see e.g. [Dim92, Corollary 4.1.4].
Adapting similar methods, one may consider the long exact sequence in homology
for the pair (P2

C, XB), which yields

· · · H3(P2
C;Z) H3(P2

C, XB(C);Z) H2(XB(C);Z) H2(P2
C;Z) · · ·

Since H3(P2
C;Z) = 0 and H2(P2

C;Z) = Z, it suffices to show that
H3(P2

C, XB(C);Z) is torsion-free. Let T be a closed tubular neighborhood of
the curve C = ∪C∈BC, with boundary ∂T . By excision, H3(P2

C, XB(C);Z) ∼=
H3(T, ∂T ;Z), and by Lefschetz duality [Hat02, p. 254], H3(T, ∂T ;Z) ∼= H1(T ;Z).
This last group is torsion-free since H1-cohomology is always torsion-free.

Moreover, since there is at least one line in the arrangement, the variety
XB(C) is affine. Therefore all homology Hk(XB(C);Z) vanishes for k > 2 by
[Mil63, Theorem 7.1]. ■

Lemma III.7.2. Let B be a simple arrangement in P2
C, with all the curves defined

over the reals, and all intersection points being real. Then H1(XB(R);Z) is
trivial.

Proof. This follows by induction. By adding the curve C to the arrangement
XB∖{C}, the real part C(R) is an S1 not contained in a component of XB∖{C}(R)
since all intersection points are real, so no H1 homology is added. ■

Theorem III.7.3. Let B be a simple arrangement in P2
C, with all the curves defined

over the reals. Suppose that all intersection points in the arrangement are real
and Trop(XB) is a tropical homology manifold. Then the complement XB is
maximal.

Proof. The arrangement B consists of smooth rational curves in P2
C, of which at

least three are lines, so we first consider the smaller arrangement BL consisting
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of only the lines. One may prove that BL is maximal, see [OT92, Corollary 5.95],
so we may proceed by induction on the number of curves in the arrangement.

Let B be a simple arrangement of curves, with all intersection points being real,
and with the corresponding arroid fan ΣAB being a tropical homology manifold.
By Proposition III.6.1, the arrangement complement XB is wunderschön, and
so by [AAPS23, Theorem 6.1], it is cohomologically tropical. By [AAPS23,
Theorem 6.2], we have isomorphisms Hk(XB(C)) ∼= Hk,0(ΣAB ), and in particular
bk(XB(C);Z/2Z) = dim Hk,0(ΣAB ), for all k since the homology is torsion-free
by Lemma III.7.1.

For any choice of curve C ∈ B and corresponding i ∈ A, the reduced star
fan of the ray ρi is given by ΣA/i by Proposition III.4.8, and is a tropical
homology manifold by assumption. It follows from Proposition III.6.1 that the
punctured curve C∗ tropicalizing to ΣA/i is wunderschön, and so by [AAPS23,
Theorem 6.2], dim Hk(C∗) = dim Hk,0(ΣA/i) for all k. Moreover, C∗(C) is
homotopic to a wedge of circles, so that its homology is torsion-free, hence
bk(C∗(C)) = bk(C∗(C);Z/2Z) = dim Hk,0(ΣA/i) for all k.

Similarly, we study the arrangement B ∖ {C}, corresponding to the
contracted arroid AB∖i. The tropicalization of its complement XB∖{C}
is the arroid fan ΣAB∖i

, which by Lemma III.5.5 is a tropical homology
manifold. By induction assumption, the complement XB∖{C} is maximal,
i.e. b•(XB∖{C}(R)) = b•(XB∖{C}(C)). By Proposition III.6.1, XB∖{C} is
wunderschön, so that by [AAPS23, Theorem 6.1] it is cohomologically tropical,
and therefore Hk,0(ΣAB∖i

) ∼= Hk(XB∖{C}(C)) for all k by [AAPS23, Theorem
6.2]. Therefore bk(XB∖{C}(C)) = bk(XB∖{C}(C);Z/2Z) = dim Hk,0(ΣAB∖i

) for
all k.

By Lemma III.7.2, b•(XB(R)) = b0(XB(R)) for any simple arrangement with
real intersection points. Moreover, each arc of C∗(R) increases the number of
connected components of XB∖{C}(R) by 1, so counting the number of connected
components of XB(R), we have b0(XB(R)) = b0(XB∖{C}(R)) + b0(C∗(R)). Note
also that the number of punctures of S1 ∼= C(R) by real points is b0(C∗(R)),
so C∗(C) is a punctured Riemann sphere, which gives b0(C∗(R)) = b•(C∗(C)).
Summarizing, we have

b•(XB(R)) = b0(XB(R)) = b0(XB∖{C}(R)) + b0(C∗(R))
= b•(XB∖{C}(C)) + b•(C∗(C)).

By Lemma III.5.2, we have dim Hk−1,0(ΣA/i) + dim Hk,0(ΣA∖i) =
dim Hk,0(ΣA) for all k, which when combined with the equalities between tropi-
cal cohomology and singular cohomology described above, yield b•(XB∖{C}(C))+
b•(C∗(C)) = b•(XB(C)). ■

Example III.7.4. We illustrate Theorem III.7.3 by the example displayed in
Figure III.6. It is constructed by selecting four points, drawing all lines between
them, and then selecting any number of non-singular conics passing through
those same four points. To see that these arrangements are tropical homology
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Figure III.6: A maximal arrangement

manifolds, it suffices to note that in each intersection point of a line with a conic,
multiple other lines pass through the same point, so that all rays associated to
lines of the arroid fan are uniquely balanced by Lemma III.5.8, and all intersection
points of any pair of conics are connected by lines, so that by Lemma III.5.11 all
rays associated to conics are uniquely balanced. By Theorem III.5.4, the arroid
fan is therefore a tropical homology manifold, hence by Theorem III.7.3 each
such arrangement is maximal.

Finally, simple real arrangements of curves, all intersecting in real points,
with the tropicalization of the complement being a tropical homology manifold,
satisfy conditions (a), (b) and (c) of [AM22, p. 3].

Theorem III.7.5. Let B be a simple arrangement of real curves in P2
C, with all

intersection points being real, and such that the tropicalization Trop(XB), which
is supported on the arroid fan ΣAB , is a tropical homology manifold. Then the
following four properties are satisfied:

(a) Hi(XB(R);Z/2Z) = 0 for i ≥ 1,

(b) XB is a maximal variety,

(c) the mixed Hodge structure on Hi(XB(C);Q) is pure of type (i, i) and
Hi(XB(C);Z) is torsion-free for i ≥ 1, and

(d) dimQ Hi(XB(C);Q) =
∑

j dimQ Hi,j(ΣAB ) for each i ≥ 0.

Proof. The first property follows from Lemma III.7.2, the second from
Theorem III.7.3. The purity of the mixed Hodge structure on rational cohomology
is satisfied because XB is wunderschön by Proposition III.6.1, and the integer
homology is torsion-free by Lemma III.7.1. The last property follows from
Theorem III.6.2, as XB is cohomologically tropical since the tropicalization is a
tropical homology manifold. ■
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In particular, the family of arrangements described in Example III.7.4 gives
examples of the varieties satisfying the conditions of [AM22].
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