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The problem with the word problem



Finitely presented groups
A group G is finitely presentable if there is a finite set of generators S = {x1, . . . , xn} and a
finite set of relations R = {r1, . . . , rk}, such that

G ∼= 〈S|R〉,

where

G ∼= 〈S|R〉 :=
{finite words written with symbols x±1

1 , . . . , x±1
n }

{relations in R}
Examples:

• S = {x , y}, R = ∅, then 〈S|R〉 = {1, x , y , x−1, yx , xyx , x2y , . . . },
• Z6

∼= 〈x |x6 = 1〉,
• Z6

∼= 〈x , y |x3 = 1, y2 = 1, xyx−1y−1 = 1〉.
Non-example:
• Any uncountable group, e.g. (R,+).

Edvard Aksnes Fundamental groups in real and complex algebraic geometry 28th January 2021 2 / 13



Finitely presented groups
A group G is finitely presentable if there is a finite set of generators S = {x1, . . . , xn} and a
finite set of relations R = {r1, . . . , rk}, such that

G ∼= 〈S|R〉,

where

G ∼= 〈S|R〉 :=
{finite words written with symbols x±1

1 , . . . , x±1
n }

{relations in R}

Examples:

• S = {x , y}, R = ∅, then 〈S|R〉 = {1, x , y , x−1, yx , xyx , x2y , . . . },
• Z6

∼= 〈x |x6 = 1〉,
• Z6

∼= 〈x , y |x3 = 1, y2 = 1, xyx−1y−1 = 1〉.
Non-example:
• Any uncountable group, e.g. (R,+).

Edvard Aksnes Fundamental groups in real and complex algebraic geometry 28th January 2021 2 / 13



Finitely presented groups
A group G is finitely presentable if there is a finite set of generators S = {x1, . . . , xn} and a
finite set of relations R = {r1, . . . , rk}, such that

G ∼= 〈S|R〉,

where

G ∼= 〈S|R〉 :=
{finite words written with symbols x±1

1 , . . . , x±1
n }

{relations in R}
Examples:
• S = {x , y}, R = ∅, then 〈S|R〉 = {1, x , y , x−1, yx , xyx , x2y , . . . },

• Z6
∼= 〈x |x6 = 1〉,

• Z6
∼= 〈x , y |x3 = 1, y2 = 1, xyx−1y−1 = 1〉.

Non-example:
• Any uncountable group, e.g. (R,+).

Edvard Aksnes Fundamental groups in real and complex algebraic geometry 28th January 2021 2 / 13



Finitely presented groups
A group G is finitely presentable if there is a finite set of generators S = {x1, . . . , xn} and a
finite set of relations R = {r1, . . . , rk}, such that

G ∼= 〈S|R〉,

where

G ∼= 〈S|R〉 :=
{finite words written with symbols x±1

1 , . . . , x±1
n }

{relations in R}
Examples:
• S = {x , y}, R = ∅, then 〈S|R〉 = {1, x , y , x−1, yx , xyx , x2y , . . . },
• Z6

∼= 〈x |x6 = 1〉,

• Z6
∼= 〈x , y |x3 = 1, y2 = 1, xyx−1y−1 = 1〉.

Non-example:
• Any uncountable group, e.g. (R,+).

Edvard Aksnes Fundamental groups in real and complex algebraic geometry 28th January 2021 2 / 13



Finitely presented groups
A group G is finitely presentable if there is a finite set of generators S = {x1, . . . , xn} and a
finite set of relations R = {r1, . . . , rk}, such that

G ∼= 〈S|R〉,

where

G ∼= 〈S|R〉 :=
{finite words written with symbols x±1

1 , . . . , x±1
n }

{relations in R}
Examples:
• S = {x , y}, R = ∅, then 〈S|R〉 = {1, x , y , x−1, yx , xyx , x2y , . . . },
• Z6

∼= 〈x |x6 = 1〉,
• Z6

∼= 〈x , y |x3 = 1, y2 = 1, xyx−1y−1 = 1〉.

Non-example:
• Any uncountable group, e.g. (R,+).

Edvard Aksnes Fundamental groups in real and complex algebraic geometry 28th January 2021 2 / 13



Finitely presented groups
A group G is finitely presentable if there is a finite set of generators S = {x1, . . . , xn} and a
finite set of relations R = {r1, . . . , rk}, such that

G ∼= 〈S|R〉,

where

G ∼= 〈S|R〉 :=
{finite words written with symbols x±1

1 , . . . , x±1
n }

{relations in R}
Examples:
• S = {x , y}, R = ∅, then 〈S|R〉 = {1, x , y , x−1, yx , xyx , x2y , . . . },
• Z6

∼= 〈x |x6 = 1〉,
• Z6

∼= 〈x , y |x3 = 1, y2 = 1, xyx−1y−1 = 1〉.
Non-example:
• Any uncountable group, e.g. (R,+).

Edvard Aksnes Fundamental groups in real and complex algebraic geometry 28th January 2021 2 / 13



The word problem
Problem (The word problem for finitely presented groups)

Given G = 〈S|R〉 and an unreduced word w = xe1
w1

. . . xek
wj

, ei = ±1, is there an algorithm
that can decide if w = 1 after using the relations?

Example solution for G = 〈x , y |∅〉 and some word w .
1 Eliminate all pairs xx−1, x−1x , yy−1, . . . , in w .
2 If the word is empty after this, then w = 1, otherwise w 6= 1.

Theorem (Novikov-Boone-Britton)

There exists a finitely presented group G with an unsolvable word problem.

No algorithm to determine whether two finitely presented groups are isomorphic! [1, Prop
12.34].

Edvard Aksnes Fundamental groups in real and complex algebraic geometry 28th January 2021 3 / 13



The word problem
Problem (The word problem for finitely presented groups)

Given G = 〈S|R〉 and an unreduced word w = xe1
w1

. . . xek
wj

, ei = ±1, is there an algorithm
that can decide if w = 1 after using the relations?

Example solution for G = 〈x , y |∅〉 and some word w .
1 Eliminate all pairs xx−1, x−1x , yy−1, . . . , in w .
2 If the word is empty after this, then w = 1, otherwise w 6= 1.

Theorem (Novikov-Boone-Britton)

There exists a finitely presented group G with an unsolvable word problem.

No algorithm to determine whether two finitely presented groups are isomorphic! [1, Prop
12.34].

Edvard Aksnes Fundamental groups in real and complex algebraic geometry 28th January 2021 3 / 13



The word problem
Problem (The word problem for finitely presented groups)

Given G = 〈S|R〉 and an unreduced word w = xe1
w1

. . . xek
wj

, ei = ±1, is there an algorithm
that can decide if w = 1 after using the relations?

Example solution for G = 〈x , y |∅〉 and some word w .
1 Eliminate all pairs xx−1, x−1x , yy−1, . . . , in w .
2 If the word is empty after this, then w = 1, otherwise w 6= 1.

Theorem (Novikov-Boone-Britton)

There exists a finitely presented group G with an unsolvable word problem.

No algorithm to determine whether two finitely presented groups are isomorphic! [1, Prop
12.34].

Edvard Aksnes Fundamental groups in real and complex algebraic geometry 28th January 2021 3 / 13



The word problem
Problem (The word problem for finitely presented groups)

Given G = 〈S|R〉 and an unreduced word w = xe1
w1

. . . xek
wj

, ei = ±1, is there an algorithm
that can decide if w = 1 after using the relations?

Example solution for G = 〈x , y |∅〉 and some word w .
1 Eliminate all pairs xx−1, x−1x , yy−1, . . . , in w .
2 If the word is empty after this, then w = 1, otherwise w 6= 1.

Theorem (Novikov-Boone-Britton)

There exists a finitely presented group G with an unsolvable word problem.

No algorithm to determine whether two finitely presented groups are isomorphic! [1, Prop
12.34].

Edvard Aksnes Fundamental groups in real and complex algebraic geometry 28th January 2021 3 / 13



Fundamental groups of manifolds



Smooth manifolds
Theorem

For all finitely presented groups G = 〈S|R〉, there is a smooth closed n-manifold M with
π1(M) = G, for every n ≥ 4.
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Smooth manifolds
Theorem

For all finitely presented groups G = 〈S|R〉, there is a smooth closed n-manifold M with
π1(M) = G, for every n ≥ 4.

Let G have |S| = k , |R| = l . Take

X = (S1 × Sn−1)# . . .#(S1 × Sn−1),

k -times.
The relations can be represented by l-smoothly embedded circles.
By surgery, replace the neighbourhoods S1 × Dn−1 by D2 × Sn−2, giving a smooth closed
manifold M.
Then the Seifert-van Kampen theorem implies π1(M) ∼= G.
This has been known at least since the 1930s.
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Smooth manifolds
Theorem

For all finitely presented groups G = 〈S|R〉, there is a smooth closed n-manifold M with
π1(M) = G, for every n ≥ 4.

Corollary

It is impossible to classify manifolds up to diffeomorphism.

Such a classification would solve the word problem!
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Complex manifolds
Theorem

For a finitely presented group G, there is a complex closed 3-manifold Y with π1(Y ) = G.

Idea of proof:

• Take the smooth 4-manifold M from the previous slide,
• Take many connected sums with CP2, getting

X = M#CP2# . . .#CP2,

• Solve a particular PDE on vector bundles of X to get a complex 3-manifold Y .
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Kähler manifolds
A Kähler manifold is a complex manifold with a metric tensor H giving inner products on
the tangent spaces, such that the associated (1,1) form is closed. In particular complex
projective manifolds are Kähler.

Theorem

Some finitely presented group G cannot be the fundamental group of a closed Kähler
manifold.

This is in part because the existence of the Kähler metric forces a decomposition:

H1(X ;C) =
⊕

p+q=1

Hp,q(X ).

But, for any finitely presented group G, there is an open Kähler surface with π1(X ) = G.
For details see [2, Chapter 1.].
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Kähler groups
A Kähler group is a group which is π1 of some Kähler manifold.
Some examples:

• Every finite group.
• Certain sublattices of the real Heisenberg group.
• The groups Γg = 〈α1, . . . ,αg ,β1, . . . ,βg |

∏g
i=1[αi ,βi ] = 1〉.

• Class closed under direct product and passage to finite index subgroups.
• Many more odd and difficult examples, lots of group theory.

Some non-examples:

• Non-trivial free groups.
• Groups where the rank of the Abelianisation is not even.
• SL(N,Z) is not Kähler, for all N ≥ 2.
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Fundamental groups of varieties



Real varieties
Let X = V (f1, . . . , fr ) ⊆ Pn

C be the zero set of fi ∈ R[x0, . . . , xn]. The real points is the set

X (R) = {x ∈ RPn| fi(x) = 0, ∀i}

with the Euclidean topology.

What is the possible topology of X (R)?

Theorem (Nash [5], Tognoli [6])

For every compact differentiable manifold M, there is a smooth, projective real variety X
such that M is diffeomorphic to X (R).

Corollary

No algorithm can determine whether two smooth projective real varieties are isomorphic.
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Complex varieties
Let X = V (f1, . . . , fr ) ⊆ Pn

C be the zero set of fi ∈ C[x0, . . . , xn]. The complex points is the
set

X (C) = {x ∈ CPn| fi(x) = 0, ∀i}

with the Euclidean topology.

What is the possible topology of X (C)?

NB: In general a hard problem, see for instance the Hodge conjecture.

Theorem (Simpson [7])

Let G be a finitely presented group. Then there is an irreducible complex singular
projective variety X such that π1(X (C)) = G.

Again, no algorithm can exist to classify singular complex projective varieties.
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Smooth complex varieties
What if X = V (f1, . . . , fr ) ⊆ Pn

C is smooth? Then X (C) is a Kähler manifold, hence
π1(X (C)) is restricted to be a Kähler group.

But we can do much better:

Theorem (Lefschetz Hyperplane Theorem)

Let X ⊆ Pn
C be a smooth projective variety, and Y = X ∩H a generic hyperplane section.

Then for all i ≤ dimC(X )− 2, we have

πi(Y ) ∼= πi(X )

=⇒ only need to study fundamental groups of smooth projective complex surfaces!

Open problem

Is every Kähler group the fundamental group of a smooth projective complex variety?

∃ compact Kähler manifolds which do not have the homotopy type of such varieties [8].
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Open problem

Is every Kähler group the fundamental group of a smooth projective complex variety?

∃ compact Kähler manifolds which do not have the homotopy type of such varieties [8].
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