

UiO : **Department of Mathematics**
University of Oslo

Fundamental groups in real and complex algebraic geometry

Edvard Aksnes

January 28, 2021

Table of contents

1 The problem with the word problem

- Finitely presented groups
- The word problem

2 Fundamental groups of manifolds

- Smooth manifolds
- Complex manifolds
- Kähler manifolds

3 Fundamental groups of varieties

- Real varieties
- Complex varieties
- Smooth complex varieties

4 References

The problem with the word problem

Finitely presented groups

A group G is **finitely presentable** if there is a finite set of generators $S = \{x_1, \dots, x_n\}$ and a finite set of relations $R = \{r_1, \dots, r_k\}$, such that

$$G \cong \langle S | R \rangle,$$

Finitely presented groups

A group G is **finitely presentable** if there is a finite set of generators $S = \{x_1, \dots, x_n\}$ and a finite set of relations $R = \{r_1, \dots, r_k\}$, such that

$$G \cong \langle S | R \rangle,$$

where

$$G \cong \langle S | R \rangle := \frac{\{\text{finite words written with symbols } x_1^{\pm 1}, \dots, x_n^{\pm 1}\}}{\{\text{relations in } R\}}$$

Finitely presented groups

A group G is **finitely presentable** if there is a finite set of generators $S = \{x_1, \dots, x_n\}$ and a finite set of relations $R = \{r_1, \dots, r_k\}$, such that

$$G \cong \langle S | R \rangle,$$

where

$$G \cong \langle S | R \rangle := \frac{\{\text{finite words written with symbols } x_1^{\pm 1}, \dots, x_n^{\pm 1}\}}{\{\text{relations in } R\}}$$

Examples:

- $S = \{x, y\}$, $R = \emptyset$, then $\langle S | R \rangle = \{1, x, y, x^{-1}, yx, xyx, x^2y, \dots\}$,

Finitely presented groups

A group G is **finitely presentable** if there is a finite set of generators $S = \{x_1, \dots, x_n\}$ and a finite set of relations $R = \{r_1, \dots, r_k\}$, such that

$$G \cong \langle S | R \rangle,$$

where

$$G \cong \langle S | R \rangle := \frac{\{\text{finite words written with symbols } x_1^{\pm 1}, \dots, x_n^{\pm 1}\}}{\{\text{relations in } R\}}$$

Examples:

- $S = \{x, y\}$, $R = \emptyset$, then $\langle S | R \rangle = \{1, x, y, x^{-1}, yx, xyx, x^2y, \dots\}$,
- $\mathbb{Z}_6 \cong \langle x | x^6 = 1 \rangle$,

Finitely presented groups

A group G is **finitely presentable** if there is a finite set of generators $S = \{x_1, \dots, x_n\}$ and a finite set of relations $R = \{r_1, \dots, r_k\}$, such that

$$G \cong \langle S | R \rangle,$$

where

$$G \cong \langle S | R \rangle := \frac{\{\text{finite words written with symbols } x_1^{\pm 1}, \dots, x_n^{\pm 1}\}}{\{\text{relations in } R\}}$$

Examples:

- $S = \{x, y\}$, $R = \emptyset$, then $\langle S | R \rangle = \{1, x, y, x^{-1}, yx, xyx, x^2y, \dots\}$,
- $\mathbb{Z}_6 \cong \langle x | x^6 = 1 \rangle$,
- $\mathbb{Z}_6 \cong \langle x, y | x^3 = 1, y^2 = 1, xyx^{-1}y^{-1} = 1 \rangle$.

Finitely presented groups

A group G is **finitely presentable** if there is a finite set of generators $S = \{x_1, \dots, x_n\}$ and a finite set of relations $R = \{r_1, \dots, r_k\}$, such that

$$G \cong \langle S | R \rangle,$$

where

$$G \cong \langle S | R \rangle := \frac{\{\text{finite words written with symbols } x_1^{\pm 1}, \dots, x_n^{\pm 1}\}}{\{\text{relations in } R\}}$$

Examples:

- $S = \{x, y\}$, $R = \emptyset$, then $\langle S | R \rangle = \{1, x, y, x^{-1}, yx, xyx, x^2y, \dots\}$,
- $\mathbb{Z}_6 \cong \langle x | x^6 = 1 \rangle$,
- $\mathbb{Z}_6 \cong \langle x, y | x^3 = 1, y^2 = 1, xyx^{-1}y^{-1} = 1 \rangle$.

Non-example:

- Any uncountable group, e.g. $(\mathbb{R}, +)$.

The word problem

Problem (The word problem for finitely presented groups)

Given $G = \langle S | R \rangle$ and an unreduced word $w = x_{w_1}^{e_1} \dots x_{w_j}^{e_k}$, $e_i = \pm 1$, is there an algorithm that can decide if $w = 1$ after using the relations?

The word problem

Problem (The word problem for finitely presented groups)

Given $G = \langle S | R \rangle$ and an unreduced word $w = x_{w_1}^{e_1} \dots x_{w_j}^{e_k}$, $e_i = \pm 1$, is there an algorithm that can decide if $w = 1$ after using the relations?

Example solution for $G = \langle x, y | \emptyset \rangle$ and some word w .

- ① Eliminate all pairs xx^{-1} , $x^{-1}x$, yy^{-1} , \dots , in w .
- ② If the word is empty after this, then $w = 1$, otherwise $w \neq 1$.

The word problem

Problem (The word problem for finitely presented groups)

Given $G = \langle S | R \rangle$ and an unreduced word $w = x_{w_1}^{e_1} \dots x_{w_j}^{e_j}$, $e_i = \pm 1$, is there an algorithm that can decide if $w = 1$ after using the relations?

Example solution for $G = \langle x, y | \emptyset \rangle$ and some word w .

- 1 Eliminate all pairs xx^{-1} , $x^{-1}x$, yy^{-1} , \dots , in w .
- 2 If the word is empty after this, then $w = 1$, otherwise $w \neq 1$.

Theorem (Novikov-Boone-Britton)

There exists a finitely presented group G with an unsolvable word problem.

The word problem

Problem (The word problem for finitely presented groups)

Given $G = \langle S | R \rangle$ and an unreduced word $w = x_{w_1}^{e_1} \dots x_{w_j}^{e_j}$, $e_i = \pm 1$, is there an algorithm that can decide if $w = 1$ after using the relations?

Example solution for $G = \langle x, y | \emptyset \rangle$ and some word w .

- ① Eliminate all pairs xx^{-1} , $x^{-1}x$, yy^{-1} , \dots , in w .
- ② If the word is empty after this, then $w = 1$, otherwise $w \neq 1$.

Theorem (Novikov-Boone-Britton)

There exists a finitely presented group G with an unsolvable word problem.

No algorithm to determine whether two finitely presented groups are isomorphic! [1, Prop 12.34].

Fundamental groups of manifolds

Smooth manifolds

Theorem

For all finitely presented groups $G = \langle S|R \rangle$, there is a smooth closed n -manifold M with $\pi_1(M) = G$, for every $n \geq 4$.

Smooth manifolds

Theorem

For all finitely presented groups $G = \langle S | R \rangle$, there is a smooth closed n -manifold M with $\pi_1(M) = G$, for every $n \geq 4$.

Let G have $|S| = k$, $|R| = l$. Take

$$X = (S^1 \times S^{n-1}) \# \dots \# (S^1 \times S^{n-1}),$$

k -times.

The relations can be represented by l -smoothly embedded circles.

By surgery, replace the neighbourhoods $S^1 \times D^{n-1}$ by $D^2 \times S^{n-2}$, giving a smooth closed manifold M .

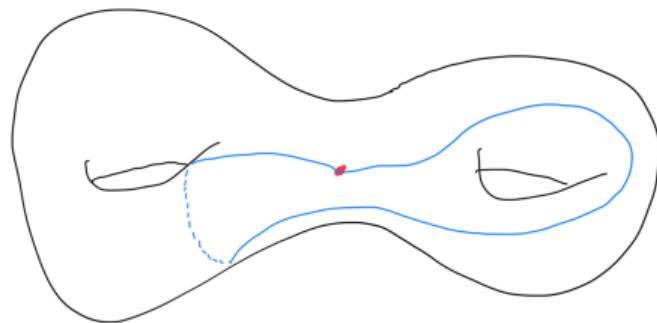
Then the Seifert-van Kampen theorem implies $\pi_1(M) \cong G$.

This has been known at least since the 1930s.

Smooth manifolds

Theorem

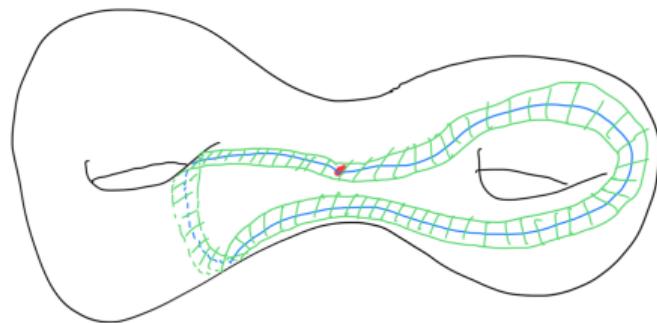
For all finitely presented groups $G = \langle S|R \rangle$, there is a smooth closed n -manifold M with $\pi_1(M) = G$, for every $n \geq 4$.



Smooth manifolds

Theorem

For all finitely presented groups $G = \langle S|R \rangle$, there is a smooth closed n -manifold M with $\pi_1(M) = G$, for every $n \geq 4$.



Smooth manifolds

Theorem

For all finitely presented groups $G = \langle S|R \rangle$, there is a smooth closed n -manifold M with $\pi_1(M) = G$, for every $n \geq 4$.

Corollary

It is impossible to classify manifolds up to diffeomorphism.

Such a classification would solve the word problem!

Complex manifolds

Theorem

For a finitely presented group G , there is a complex closed 3-manifold Y with $\pi_1(Y) = G$.

Complex manifolds

Theorem

For a finitely presented group G , there is a complex closed 3-manifold Y with $\pi_1(Y) = G$.

Idea of proof:

Complex manifolds

Theorem

For a finitely presented group G , there is a complex closed 3-manifold Y with $\pi_1(Y) = G$.

Idea of proof:

- Take the smooth 4-manifold M from the previous slide,

Complex manifolds

Theorem

For a finitely presented group G , there is a complex closed 3-manifold Y with $\pi_1(Y) = G$.

Idea of proof:

- Take the smooth 4-manifold M from the previous slide,
- Take many connected sums with $\overline{\mathbb{CP}^2}$, getting

$$X = M \# \overline{\mathbb{CP}^2} \# \dots \# \overline{\mathbb{CP}^2},$$

Complex manifolds

Theorem

For a finitely presented group G , there is a complex closed 3-manifold Y with $\pi_1(Y) = G$.

Idea of proof:

- Take the smooth 4-manifold M from the previous slide,
- Take many connected sums with $\overline{\mathbb{CP}^2}$, getting

$$X = M \# \overline{\mathbb{CP}^2} \# \dots \# \overline{\mathbb{CP}^2},$$

- Solve a particular PDE on vector bundles of X to get a complex 3-manifold Y .

Kähler manifolds

A **Kähler manifold** is a complex manifold with a metric tensor H giving inner products on the tangent spaces, such that the associated $(1, 1)$ form is closed. In particular complex projective manifolds are Kähler.

Kähler manifolds

A **Kähler manifold** is a complex manifold with a metric tensor H giving inner products on the tangent spaces, such that the associated $(1, 1)$ form is closed. In particular complex projective manifolds are Kähler.

Theorem

*Some finitely presented group G **cannot** be the fundamental group of a closed Kähler manifold.*

This is in part because the existence of the Kähler metric forces a decomposition:

$$H^1(X; \mathbb{C}) = \bigoplus_{p+q=1} H^{p,q}(X).$$

Kähler manifolds

A **Kähler manifold** is a complex manifold with a metric tensor H giving inner products on the tangent spaces, such that the associated $(1, 1)$ form is closed. In particular complex projective manifolds are Kähler.

Theorem

*Some finitely presented group G **cannot** be the fundamental group of a closed Kähler manifold.*

This is in part because the existence of the Kähler metric forces a decomposition:

$$H^1(X; \mathbb{C}) = \bigoplus_{p+q=1} H^{p,q}(X).$$

But, for any finitely presented group G , there is an **open** Kähler surface with $\pi_1(X) = G$. For details see [2, Chapter 1.].

Kähler groups

A **Kähler group** is a group which is π_1 of some Kähler manifold.

Some examples:

Kähler groups

A **Kähler group** is a group which is π_1 of some Kähler manifold.

Some examples:

- Every finite group.

Kähler groups

A **Kähler group** is a group which is π_1 of some Kähler manifold.

Some examples:

- Every finite group.
- Certain sublattices of the real Heisenberg group.

Kähler groups

A **Kähler group** is a group which is π_1 of some Kähler manifold.

Some examples:

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g \mid \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.

Kähler groups

A **Kähler group** is a group which is π_1 of some Kähler manifold.

Some examples:

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g \mid \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.
- Class closed under direct product and passage to finite index subgroups.

Kähler groups

A **Kähler group** is a group which is π_1 of some Kähler manifold.

Some examples:

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g \mid \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.
- Class closed under direct product and passage to finite index subgroups.
- Many more odd and difficult examples, lots of group theory.

Kähler groups

A **Kähler group** is a group which is π_1 of some Kähler manifold.

Some examples:

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g \mid \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.
- Class closed under direct product and passage to finite index subgroups.
- Many more odd and difficult examples, lots of group theory.

Some non-examples:

Kähler groups

A **Kähler group** is a group which is π_1 of some Kähler manifold.

Some examples:

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g \mid \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.
- Class closed under direct product and passage to finite index subgroups.
- Many more odd and difficult examples, lots of group theory.

Some non-examples:

- Non-trivial free groups.

Kähler groups

A **Kähler group** is a group which is π_1 of some Kähler manifold.

Some examples:

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g \mid \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.
- Class closed under direct product and passage to finite index subgroups.
- Many more odd and difficult examples, lots of group theory.

Some non-examples:

- Non-trivial free groups.
- Groups where the rank of the Abelianisation is not even.

Kähler groups

A **Kähler group** is a group which is π_1 of some Kähler manifold.

Some examples:

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g \mid \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.
- Class closed under direct product and passage to finite index subgroups.
- Many more odd and difficult examples, lots of group theory.

Some non-examples:

- Non-trivial free groups.
- Groups where the rank of the Abelianisation is not even.
- $SL(N, \mathbb{Z})$ is not Kähler, for all $N \geq 2$.

Fundamental groups of varieties

Real varieties

Let $X = V(f_1, \dots, f_r) \subseteq \mathbb{P}_{\mathbb{C}}^n$ be the zero set of $f_i \in \mathbb{R}[x_0, \dots, x_n]$. The **real points** is the set

$$X(\mathbb{R}) = \{x \in \mathbb{R}\mathbb{P}^n \mid f_i(x) = 0, \forall i\}$$

with the Euclidean topology.

What is the possible topology of $X(\mathbb{R})$?

Real varieties

Let $X = V(f_1, \dots, f_r) \subseteq \mathbb{P}_{\mathbb{C}}^n$ be the zero set of $f_i \in \mathbb{R}[x_0, \dots, x_n]$. The **real points** is the set

$$X(\mathbb{R}) = \{x \in \mathbb{R}\mathbb{P}^n \mid f_i(x) = 0, \forall i\}$$

with the Euclidean topology.

What is the possible topology of $X(\mathbb{R})$?

Theorem (Nash [5], Tognoli [6])

For every compact differentiable manifold M , there is a smooth, projective real variety X such that M is diffeomorphic to $X(\mathbb{R})$.

Real varieties

Let $X = V(f_1, \dots, f_r) \subseteq \mathbb{P}_{\mathbb{C}}^n$ be the zero set of $f_i \in \mathbb{R}[x_0, \dots, x_n]$. The **real points** is the set

$$X(\mathbb{R}) = \{x \in \mathbb{R}\mathbb{P}^n \mid f_i(x) = 0, \forall i\}$$

with the Euclidean topology.

What is the possible topology of $X(\mathbb{R})$?

Theorem (Nash [5], Tognoli [6])

For every compact differentiable manifold M , there is a smooth, projective real variety X such that M is diffeomorphic to $X(\mathbb{R})$.

Corollary

No algorithm can determine whether two smooth projective real varieties are isomorphic.

Complex varieties

Let $X = V(f_1, \dots, f_r) \subseteq \mathbb{P}_{\mathbb{C}}^n$ be the zero set of $f_i \in \mathbb{C}[x_0, \dots, x_n]$. The **complex points** is the set

$$X(\mathbb{C}) = \{x \in \mathbb{C}\mathbb{P}^n \mid f_i(x) = 0, \forall i\}$$

with the Euclidean topology.

Complex varieties

Let $X = V(f_1, \dots, f_r) \subseteq \mathbb{P}_{\mathbb{C}}^n$ be the zero set of $f_i \in \mathbb{C}[x_0, \dots, x_n]$. The **complex points** is the set

$$X(\mathbb{C}) = \{x \in \mathbb{C}\mathbb{P}^n \mid f_i(x) = 0, \forall i\}$$

with the Euclidean topology.

What is the possible topology of $X(\mathbb{C})$?

NB: In general a hard problem, see for instance the Hodge conjecture.

Complex varieties

Let $X = V(f_1, \dots, f_r) \subseteq \mathbb{P}_{\mathbb{C}}^n$ be the zero set of $f_i \in \mathbb{C}[x_0, \dots, x_n]$. The **complex points** is the set

$$X(\mathbb{C}) = \{x \in \mathbb{C}\mathbb{P}^n \mid f_i(x) = 0, \forall i\}$$

with the Euclidean topology.

What is the possible topology of $X(\mathbb{C})$?

NB: In general a hard problem, see for instance the Hodge conjecture.

Theorem (Simpson [7])

Let G be a finitely presented group. Then there is an irreducible complex **singular** projective variety X such that $\pi_1(X(\mathbb{C})) = G$.

Complex varieties

Let $X = V(f_1, \dots, f_r) \subseteq \mathbb{P}_{\mathbb{C}}^n$ be the zero set of $f_i \in \mathbb{C}[x_0, \dots, x_n]$. The **complex points** is the set

$$X(\mathbb{C}) = \{x \in \mathbb{C}\mathbb{P}^n \mid f_i(x) = 0, \forall i\}$$

with the Euclidean topology.

What is the possible topology of $X(\mathbb{C})$?

NB: In general a hard problem, see for instance the Hodge conjecture.

Theorem (Simpson [7])

*Let G be a finitely presented group. Then there is an irreducible complex **singular** projective variety X such that $\pi_1(X(\mathbb{C})) = G$.*

Again, no algorithm can exist to classify singular complex projective varieties.

Smooth complex varieties

What if $X = V(f_1, \dots, f_r) \subseteq \mathbb{P}_{\mathbb{C}}^n$ is smooth? Then $X(\mathbb{C})$ is a Kähler manifold, hence $\pi_1(X(\mathbb{C}))$ is restricted to be a Kähler group.

Smooth complex varieties

What if $X = V(f_1, \dots, f_r) \subseteq \mathbb{P}_{\mathbb{C}}^n$ is smooth? Then $X(\mathbb{C})$ is a Kähler manifold, hence $\pi_1(X(\mathbb{C}))$ is restricted to be a Kähler group. But we can do much better:

Theorem (Lefschetz Hyperplane Theorem)

Let $X \subseteq \mathbb{P}_{\mathbb{C}}^n$ be a smooth projective variety, and $Y = X \cap H$ a generic hyperplane section. Then for all $i \leq \dim_{\mathbb{C}}(X) - 2$, we have

$$\pi_i(Y) \cong \pi_i(X)$$

Smooth complex varieties

What if $X = V(f_1, \dots, f_r) \subseteq \mathbb{P}_{\mathbb{C}}^n$ is smooth? Then $X(\mathbb{C})$ is a Kähler manifold, hence $\pi_1(X(\mathbb{C}))$ is restricted to be a Kähler group. But we can do much better:

Theorem (Lefschetz Hyperplane Theorem)

Let $X \subseteq \mathbb{P}_{\mathbb{C}}^n$ be a smooth projective variety, and $Y = X \cap H$ a generic hyperplane section. Then for all $i \leq \dim_{\mathbb{C}}(X) - 2$, we have

$$\pi_i(Y) \cong \pi_i(X)$$

⇒ only need to study fundamental groups of smooth projective complex **surfaces**!

Smooth complex varieties

What if $X = V(f_1, \dots, f_r) \subseteq \mathbb{P}_{\mathbb{C}}^n$ is smooth? Then $X(\mathbb{C})$ is a Kähler manifold, hence $\pi_1(X(\mathbb{C}))$ is restricted to be a Kähler group. But we can do much better:

Theorem (Lefschetz Hyperplane Theorem)

Let $X \subseteq \mathbb{P}_{\mathbb{C}}^n$ be a smooth projective variety, and $Y = X \cap H$ a generic hyperplane section. Then for all $i \leq \dim_{\mathbb{C}}(X) - 2$, we have

$$\pi_i(Y) \cong \pi_i(X)$$

⇒ only need to study fundamental groups of smooth projective complex **surfaces**!

Open problem

Is every Kähler group the fundamental group of a smooth projective complex variety?

∃ compact Kähler manifolds which **do not** have the homotopy type of such varieties [8].

References I

- **Rotman, Joseph J.** *An introduction to the theory of groups.*
Springer-Verlag, 1995.
- **Amorós, J. and Burger, M. and Corlette, K. and Kotschick, D. and Toledo, D.**
Fundamental groups of compact Kähler manifolds.
American Mathematical Society, 1996.
- **Novikov, P. S.**
Ob algoritmičeskoj nerazrešimosti problemy toždestva slov v teorii grupp, [On the algorithmic unsolvability of the word problem in group theory.]
Trudy Mat. Inst. im. Steklov. no. , 44:71–89, 1955.
- **Boone, W. W.**
The word problem
Proc. of the Nat. Acad. of Sci. , 44:10 1061–1065, 1958.

References II

Nash, J.

Real algebraic manifolds

Ann. of Math. (2) , 56 405–421, 1952.

Tognoli, A.

Su una congettura di Nash

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 27 167–185, 1973.

Simpson, C.

Local systems on proper algebraic V -manifolds

Pure Appl. Math. Q., 7 1675–1759, 2011.

References III

Voisin, C.

On the homotopy types of compact Kähler and complex projective manifolds
Invent. Math., 157 329–343, 2004.

Edvard Aksnes

**Fundamental groups in real and complex
algebraic geometry**

