

Fundamental groups in real and complex algebraic geometry

Edvard Aksnes

January 28, 2021

Table of contents

The problem with the word problem

- Finitely presented groups
- The word problem

2 Fundamental groups of manifolds

- Smooth manifolds
- Complex manifolds
- Kähler manifolds

8 Fundamental groups of varieties

- Real varieties
- Complex varieties
- Smooth complex varieties

References

Δ

The problem with the word problem

A group *G* is finitely presentable if there is a finite set of generators $S = \{x_1, ..., x_n\}$ and a finite set of relations $R = \{r_1, ..., r_k\}$, such that

 $G \cong \langle S|R \rangle,$

A group *G* is finitely presentable if there is a finite set of generators $S = \{x_1, ..., x_n\}$ and a finite set of relations $R = \{r_1, ..., r_k\}$, such that

$$oldsymbol{G}\cong \langle oldsymbol{S}|oldsymbol{R}
angle,$$

where

$$G \cong \langle S|R \rangle := \frac{\{\text{finite words written with symbols } x_1^{\pm 1}, \dots, x_n^{\pm 1}\}}{\{\text{relations in } R\}}$$

A group *G* is finitely presentable if there is a finite set of generators $S = \{x_1, ..., x_n\}$ and a finite set of relations $R = \{r_1, ..., r_k\}$, such that

$$oldsymbol{G}\cong \langle oldsymbol{S}|oldsymbol{R}
angle,$$

where

$$G \cong \langle S|R \rangle := \frac{\{\text{finite words written with symbols } x_1^{\pm 1}, \dots, x_n^{\pm 1}\}}{\{\text{relations in } R\}}$$

Examples:

•
$$S = \{x, y\}, R = \emptyset$$
, then $\langle S|R \rangle = \{1, x, y, x^{-1}, yx, xyx, x^2y, \dots\},$

A group *G* is finitely presentable if there is a finite set of generators $S = \{x_1, ..., x_n\}$ and a finite set of relations $R = \{r_1, ..., r_k\}$, such that

$$oldsymbol{G}\cong \langle oldsymbol{S}|oldsymbol{R}
angle,$$

where

$$G \cong \langle S|R \rangle := \frac{\{\text{finite words written with symbols } x_1^{\pm 1}, \dots, x_n^{\pm 1}\}}{\{\text{relations in } R\}}$$

Examples:

•
$$S = \{x, y\}, R = \emptyset$$
, then $\langle S|R \rangle = \{1, x, y, x^{-1}, yx, xyx, x^2y, \dots\}$,
• $\mathbb{Z}_6 \cong \langle x|x^6 = 1 \rangle$,

A group *G* is finitely presentable if there is a finite set of generators $S = \{x_1, ..., x_n\}$ and a finite set of relations $R = \{r_1, ..., r_k\}$, such that

$$oldsymbol{G}\cong \langle oldsymbol{S}|oldsymbol{R}
angle,$$

where

$$G \cong \langle S|R \rangle := \frac{\{\text{finite words written with symbols } x_1^{\pm 1}, \dots, x_n^{\pm 1}\}}{\{\text{relations in } R\}}$$

Examples:

•
$$\mathbb{Z}_6 \cong \langle x, y | x^3 = 1, y^2 = 1, xyx^{-1}y^{-1} = 1 \rangle.$$

A group *G* is finitely presentable if there is a finite set of generators $S = \{x_1, ..., x_n\}$ and a finite set of relations $R = \{r_1, ..., r_k\}$, such that

$$oldsymbol{G}\cong \langle oldsymbol{S}|oldsymbol{R}
angle,$$

where

$$G \cong \langle S|R \rangle := \frac{\{\text{finite words written with symbols } x_1^{\pm 1}, \dots, x_n^{\pm 1}\}}{\{\text{relations in } R\}}$$

Examples:

•
$$S = \{x, y\}, R = \emptyset$$
, then $\langle S|R \rangle = \{1, x, y, x^{-1}, yx, xyx, x^2y, \dots\}$
• $\mathbb{Z}_6 \cong \langle x|x^6 = 1 \rangle$,

•
$$\mathbb{Z}_6 \cong \langle x, y | x^3 = 1, y^2 = 1, xyx^{-1}y^{-1} = 1 \rangle.$$

Non-example:

• Any uncountable group, e.g. $(\mathbb{R}, +)$.

Problem (The word problem for finitely presented groups)

Given $G = \langle S | R \rangle$ and an unreduced word $w = x_{w_1}^{e_1} \dots x_{w_j}^{e_k}$, $e_i = \pm 1$, is there an algorithm that can decide if w = 1 after using the relations?

Problem (The word problem for finitely presented groups)

Given $G = \langle S | R \rangle$ and an unreduced word $w = x_{w_1}^{e_1} \dots x_{w_j}^{e_k}$, $e_i = \pm 1$, is there an algorithm that can decide if w = 1 after using the relations?

Example solution for $G = \langle x, y | \emptyset \rangle$ and some word *w*.

- **1** Eliminate all pairs xx^{-1} , $x^{-1}x$, yy^{-1} , ..., in *w*.
- 2 If the word is empty after this, then w = 1, otherwise $w \neq 1$.

Problem (The word problem for finitely presented groups)

Given $G = \langle S | R \rangle$ and an unreduced word $w = x_{w_1}^{e_1} \dots x_{w_j}^{e_k}$, $e_i = \pm 1$, is there an algorithm that can decide if w = 1 after using the relations?

Example solution for $G = \langle x, y | \emptyset \rangle$ and some word *w*.

- **1** Eliminate all pairs xx^{-1} , $x^{-1}x$, yy^{-1} , ..., in *w*.
- 2 If the word is empty after this, then w = 1, otherwise $w \neq 1$.

Theorem (Novikov-Boone-Britton)

There exists a finitely presented group G with an unsolvable word problem.

Problem (The word problem for finitely presented groups)

Given $G = \langle S | R \rangle$ and an unreduced word $w = x_{w_1}^{e_1} \dots x_{w_j}^{e_k}$, $e_i = \pm 1$, is there an algorithm that can decide if w = 1 after using the relations?

Example solution for $G = \langle x, y | \emptyset \rangle$ and some word *w*.

- **1** Eliminate all pairs xx^{-1} , $x^{-1}x$, yy^{-1} , ..., in *w*.
- 2 If the word is empty after this, then w = 1, otherwise $w \neq 1$.

Theorem (Novikov-Boone-Britton)

There exists a finitely presented group G with an unsolvable word problem.

No algorithm to determine whether two finitely presented groups are isomorphic! [1, Prop 12.34].

Fundamental groups of manifolds

Theorem

For all finitely presented groups $G = \langle S|R \rangle$, there is a smooth closed n-manifold M with $\pi_1(M) = G$, for every $n \ge 4$.

Theorem

For all finitely presented groups $G = \langle S|R \rangle$, there is a smooth closed n-manifold M with $\pi_1(M) = G$, for every $n \ge 4$.

Let G have |S| = k, |R| = I. Take

$$X = (S^1 \times S^{n-1}) \# \ldots \# (S^1 \times S^{n-1}),$$

k-times.

The relations can be represented by /-smoothly embedded circles.

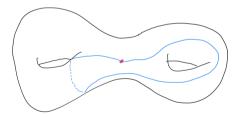
By surgery, replace the neighbourhoods $S^1 \times D^{n-1}$ by $D^2 \times S^{n-2}$, giving a smooth closed manifold *M*.

Then the Seifert-van Kampen theorem implies $\pi_1(M) \cong G$.

This has been known at least since the 1930s.

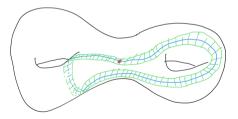
Theorem

For all finitely presented groups $G = \langle S|R \rangle$, there is a smooth closed n-manifold M with $\pi_1(M) = G$, for every $n \ge 4$.



Theorem

For all finitely presented groups $G = \langle S|R \rangle$, there is a smooth closed n-manifold M with $\pi_1(M) = G$, for every $n \ge 4$.



Theorem

For all finitely presented groups $G = \langle S|R \rangle$, there is a smooth closed n-manifold M with $\pi_1(M) = G$, for every $n \ge 4$.

Corollary

It is impossible to classify manifolds up to diffeomorphism.

Such a classification would solve the word problem!

Theorem

For a finitely presented group G, there is a complex closed 3-manifold Y with $\pi_1(Y) = G$.

Theorem

For a finitely presented group G, there is a complex closed 3-manifold Y with $\pi_1(Y) = G$.

Idea of proof:

Theorem

For a finitely presented group G, there is a complex closed 3-manifold Y with $\pi_1(Y) = G$.

Idea of proof:

• Take the smooth 4-manifold *M* from the previous slide,

Theorem

For a finitely presented group G, there is a complex closed 3-manifold Y with $\pi_1(Y) = G$.

Idea of proof:

- Take the smooth 4-manifold *M* from the previous slide,
- Take many connected sums with $\overline{\mathbb{C}P^2}$, getting

$$X = M \# \overline{\mathbb{C}P^2} \# \dots \# \overline{\mathbb{C}P^2},$$

Theorem

For a finitely presented group G, there is a complex closed 3-manifold Y with $\pi_1(Y) = G$.

Idea of proof:

- Take the smooth 4-manifold *M* from the previous slide,
- Take many connected sums with $\overline{\mathbb{C}P^2}$, getting

$$X = M \# \overline{\mathbb{C}P^2} \# \dots \# \overline{\mathbb{C}P^2},$$

• Solve a particular PDE on vector bundles of X to get a complex 3-manifold Y.

Kähler manifolds

A Kähler manifold is a complex manifold with a metric tensor H giving inner products on the tangent spaces, such that the associated (1, 1) form is closed. In particular complex projective manifolds are Kähler.

Kähler manifolds

A Kähler manifold is a complex manifold with a metric tensor H giving inner products on the tangent spaces, such that the associated (1, 1) form is closed. In particular complex projective manifolds are Kähler.

Theorem

Some finitely presented group G cannot be the fundamental group of a closed Kähler manifold.

This is in part because the existence of the Kähler metric forces a decomposition:

$$H^1(X;\mathbb{C}) = \bigoplus_{p+q=1} H^{p,q}(X).$$

Kähler manifolds

A Kähler manifold is a complex manifold with a metric tensor H giving inner products on the tangent spaces, such that the associated (1, 1) form is closed. In particular complex projective manifolds are Kähler.

Theorem

Some finitely presented group G cannot be the fundamental group of a closed Kähler manifold.

This is in part because the existence of the Kähler metric forces a decomposition:

$$H^1(X;\mathbb{C}) = \bigoplus_{p+q=1} H^{p,q}(X).$$

But, for any finitely presented group *G*, there is an open Kähler surface with $\pi_1(X) = G$. For details see [2, Chapter 1.].

A Kähler group is a group which is π_1 of some Kähler manifold. Some examples:

• Every finite group.

- Every finite group.
- Certain sublattices of the real Heisenberg group.

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g | \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g | \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.
- Class closed under direct product and passage to finite index subgroups.

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g | \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.
- Class closed under direct product and passage to finite index subgroups.
- Many more odd and difficult examples, lots of group theory.

A Kähler group is a group which is π_1 of some Kähler manifold. Some examples:

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g | \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.
- Class closed under direct product and passage to finite index subgroups.
- Many more odd and difficult examples, lots of group theory.

Some non-examples:

A Kähler group is a group which is π_1 of some Kähler manifold. Some examples:

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g | \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.
- Class closed under direct product and passage to finite index subgroups.
- Many more odd and difficult examples, lots of group theory.

Some non-examples:

• Non-trivial free groups.

A Kähler group is a group which is π_1 of some Kähler manifold. Some examples:

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g | \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.
- Class closed under direct product and passage to finite index subgroups.
- Many more odd and difficult examples, lots of group theory.

Some non-examples:

- Non-trivial free groups.
- Groups where the rank of the Abelianisation is not even.

Kähler groups

A Kähler group is a group which is π_1 of some Kähler manifold. Some examples:

- Every finite group.
- Certain sublattices of the real Heisenberg group.
- The groups $\Gamma_g = \langle \alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g | \prod_{i=1}^g [\alpha_i, \beta_i] = 1 \rangle$.
- Class closed under direct product and passage to finite index subgroups.
- Many more odd and difficult examples, lots of group theory.

Some non-examples:

- Non-trivial free groups.
- Groups where the rank of the Abelianisation is not even.
- $SL(N,\mathbb{Z})$ is not Kähler, for all $N \geq 2$.

Fundamental groups of varieties

Real varieties

Let $X = V(f_1, \ldots, f_r) \subseteq \mathbb{P}^n_{\mathbb{C}}$ be the zero set of $f_i \in \mathbb{R}[x_0, \ldots, x_n]$. The real points is the set

$$X(\mathbb{R}) = \{x \in \mathbb{RP}^n | f_i(x) = 0, \forall i\}$$

with the Euclidean topology.

What is the possible topology of $X(\mathbb{R})$?

Real varieties

Let $X = V(f_1, \ldots, f_r) \subseteq \mathbb{P}^n_{\mathbb{C}}$ be the zero set of $f_i \in \mathbb{R}[x_0, \ldots, x_n]$. The real points is the set

$$X(\mathbb{R}) = \{x \in \mathbb{RP}^n | f_i(x) = 0, \forall i\}$$

with the Euclidean topology.

What is the possible topology of $X(\mathbb{R})$?

Theorem (Nash [5], Tognoli [6])

For every compact differentiable manifold M, there is a smooth, projective real variety X such that M is diffeomorphic to $X(\mathbb{R})$.

Real varieties

Let $X = V(f_1, \ldots, f_r) \subseteq \mathbb{P}^n_{\mathbb{C}}$ be the zero set of $f_i \in \mathbb{R}[x_0, \ldots, x_n]$. The real points is the set

$$X(\mathbb{R}) = \{x \in \mathbb{RP}^n | f_i(x) = 0, \forall i\}$$

with the Euclidean topology.

What is the possible topology of $X(\mathbb{R})$?

Theorem (Nash [5], Tognoli [6])

For every compact differentiable manifold M, there is a smooth, projective real variety X such that M is diffeomorphic to $X(\mathbb{R})$.

Corollary

No algorithm can determine whether two smooth projective real varieties are isomorphic.

Edvard Aksnes

Let $X = V(f_1, ..., f_r) \subseteq \mathbb{P}^n_{\mathbb{C}}$ be the zero set of $f_i \in \mathbb{C}[x_0, ..., x_n]$. The complex points is the set

$$X(\mathbb{C}) = \{x \in \mathbb{CP}^n | f_i(x) = 0, \forall i\}$$

with the Euclidean topology.

Let $X = V(f_1, ..., f_r) \subseteq \mathbb{P}^n_{\mathbb{C}}$ be the zero set of $f_i \in \mathbb{C}[x_0, ..., x_n]$. The complex points is the set

$$X(\mathbb{C}) = \{ x \in \mathbb{CP}^n | f_i(x) = 0, \forall i \}$$

with the Euclidean topology.

```
What is the possible topology of X(\mathbb{C})?
```

NB: In general a hard problem, see for instance the Hodge conjecture.

Let $X = V(f_1, ..., f_r) \subseteq \mathbb{P}^n_{\mathbb{C}}$ be the zero set of $f_i \in \mathbb{C}[x_0, ..., x_n]$. The complex points is the set

$$X(\mathbb{C}) = \{x \in \mathbb{CP}^n | f_i(x) = 0, \forall i\}$$

with the Euclidean topology.

```
What is the possible topology of X(\mathbb{C})?
```

NB: In general a hard problem, see for instance the Hodge conjecture.

Theorem (Simpson [7])

Let G be a finitely presented group. Then there is an irreducible complex singular projective variety X such that $\pi_1(X(\mathbb{C})) = G$.

Let $X = V(f_1, ..., f_r) \subseteq \mathbb{P}^n_{\mathbb{C}}$ be the zero set of $f_i \in \mathbb{C}[x_0, ..., x_n]$. The complex points is the set

$$X(\mathbb{C}) = \{x \in \mathbb{CP}^n | f_i(x) = 0, \forall i\}$$

with the Euclidean topology.

```
What is the possible topology of X(\mathbb{C})?
```

NB: In general a hard problem, see for instance the Hodge conjecture.

Theorem (Simpson [7])

Let G be a finitely presented group. Then there is an irreducible complex singular projective variety X such that $\pi_1(X(\mathbb{C})) = G$.

Again, no algorithm can exist to classify singular complex projective varieties.

What if $X = V(f_1, ..., f_r) \subseteq \mathbb{P}^n_{\mathbb{C}}$ is smooth? Then $X(\mathbb{C})$ is a Kähler manifold, hence $\pi_1(X(\mathbb{C}))$ is restricted to be a Kähler group.

What if $X = V(f_1, ..., f_r) \subseteq \mathbb{P}^n_{\mathbb{C}}$ is smooth? Then $X(\mathbb{C})$ is a Kähler manifold, hence $\pi_1(X(\mathbb{C}))$ is restricted to be a Kähler group. But we can do much better:

Theorem (Lefschetz Hyperplane Theorem)

Let $X \subseteq \mathbb{P}^n_{\mathbb{C}}$ be a smooth projective variety, and $Y = X \cap H$ a generic hyperplane section. Then for all $i \leq \dim_{\mathbb{C}}(X) - 2$, we have

 $\pi_i(Y) \cong \pi_i(X)$

What if $X = V(f_1, ..., f_r) \subseteq \mathbb{P}^n_{\mathbb{C}}$ is smooth? Then $X(\mathbb{C})$ is a Kähler manifold, hence $\pi_1(X(\mathbb{C}))$ is restricted to be a Kähler group. But we can do much better:

Theorem (Lefschetz Hyperplane Theorem)

Let $X \subseteq \mathbb{P}^n_{\mathbb{C}}$ be a smooth projective variety, and $Y = X \cap H$ a generic hyperplane section. Then for all $i \leq \dim_{\mathbb{C}}(X) - 2$, we have

 $\pi_i(Y)\cong\pi_i(X)$

→ only need to study fundamental groups of smooth projective complex surfaces!

What if $X = V(f_1, ..., f_r) \subseteq \mathbb{P}^n_{\mathbb{C}}$ is smooth? Then $X(\mathbb{C})$ is a Kähler manifold, hence $\pi_1(X(\mathbb{C}))$ is restricted to be a Kähler group. But we can do much better:

Theorem (Lefschetz Hyperplane Theorem)

Let $X \subseteq \mathbb{P}^n_{\mathbb{C}}$ be a smooth projective variety, and $Y = X \cap H$ a generic hyperplane section. Then for all $i \leq \dim_{\mathbb{C}}(X) - 2$, we have

$$\pi_i(Y)\cong\pi_i(X)$$

 \implies only need to study fundamental groups of smooth projective complex surfaces!

Open problem

Is every Kähler group the fundamental group of a smooth projective complex variety?

 \exists compact Kähler manifolds which do not have the homotopy type of such varieties [8].

Edvard Aksnes

References I

Rotman, Joseph J. An introduction to the theory of groups. Springer-Verlag, 1995.

Amorós, J. and Burger, M. and Corlette, K. and Kotschick, D. and Toledo, D. Fundamental groups of compact Kähler manifolds. American Mathematical Society, 1996.

Novikov, P. S.

Ob algoritmičeskoĭ nerazrešimosti problemy toždestva slov v teorii grupp, [On the algorithmic unsolvability of the word problem in group theory.] *Trudy Mat. Inst. im. Steklov. no.*, 44:71–89, 1955.

Boone, W. W.

The word problem

Proc. of the Nat. Acad. of Sci., 44:10 1061-1065, 1958.

References II

Nash, J.

Real algebraic manifolds Ann. of Math. (2), 56 405–421, 1952.

Tognoli, A.

Su una congettura di Nash

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 27 167–185, 1973.

🔋 Si

Simpson, C.

Local systems on proper algebraic V-manifolds *Pure Appl. Math. Q.*, 7 1675–1759, 2011.

References III

🔋 Voisin, C.

On the homotopy types of compact Kähler and complex projective manifolds *Invent. Math.*, 157 329–343, 2004.

UiO **Department of Mathematics** University of Oslo

Edvard Aksnes

Fundamental groups in real and complex algebraic geometry

