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Program execution is typically linear...

# main.py

my_hash_map = {"a": 1, "b": 2}

print (my_hash_map["a"])

my_hash_map["b"] = 3

print (my_hash_map["a"] + my_hash _map["b"])
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Program execution is typically linear...

# main.py

my_hash map = {"a": 1, "b": 2}

print (my_hash_map["a"])

my_hash_map["b"] = 3

print (my_hash_map["a"] + my_hash_map["b"])

Output:

$ python main.py
1
4
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Program execution is typically linear...

# main.py

my_hash_map = {"a": 1, "b": 2}

print (my_hash_map["c"])

my_hash_map["b"] = 3

print (my_hash_map["a"] + my_hash _map["b"])
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Program execution is typically linear... NOT

# main.py

my_hash_map = {"a": 1, "b": 2}

print (my_hash_map["c"])

my_hash_map["b"] = 3

print (my_hash_map["a"] + my_hash_map["b"])

Output:
Traceback (most recent call last):
File "main.py", line 3, in <module>
print (my_hash_map["c"])

KeyError: 'c'
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Program execution is typically linear... NOT

my_hash '
print (m

Output:

Traceba | _
File ':
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Becomes worse and worse...

# super_important_business_critical_code.py

important = haha_i_only_work_sometimes ()

try:

must_be_done_every_time = lol_dont_care(important)
except:

# run for your life

pass
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Can we do something about this?

def only_works_sometimes(a:float, b:float) -> float:
return a / b
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Can we do something about this?

def who_knows what_i 11 do(a:int, b:int) -> int:
return a / b

def predictable(a:int, b:int) -> <int, ZeroDivError>:
return a / b
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Algebraic effects!




valuev == z

‘ true ’ false

‘ funz — ¢
| B
handler & ::= handler {return T — cr,
opi(z;k) — c1,...,0p,(z; k) — cn}
computation ¢ ::= return v
op(v;y.c)

dox < ¢1 in ¢

U1 v2

|
|
‘ if v then ¢ else ¢3
|
‘ with v handle ¢
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Overall idea

Leading question

What if the type system was expanded with effects and handlers?
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Overall idea

Leading question

What if the type system was expanded with effects and handlers?

In addition to functions and values, we add effects opy,...,0p,:
opi(v;y.c) <= let y= perform (op; v)in c
and handlers:

h = {return x — ¢,,0p,(v) — ¢4}
<= h=handler {
return x — Cout,

opi(v, k) — ¢;
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The Eff programming language




Going beyond effects

Handlers let us say "when this happens, do that.”

But what if we could decide what happens
next?
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Introduction to call/cc

In Scheme, the call/cc function allows you to capture the
context of a computation, i.e. the rest of the program.
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Introduction to call/cc

In Scheme, the call/cc function allows you to capture the
context of a computation, i.e. the rest of the program.

Always has been

Unlimited power!

Figure: You should have seen this
coming Figure: What we're about to do
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A story for another time...

*programming
language theory talk*

monads:

Bonjour
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FIN
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