Exceptions aren’t cool

Edvard Aksnes

PwC Norway

2025

Edvard Aksnes Exceptions aren't cool

Program execution is typically linear...

main.py

my_hash_map = {"a": 1, "b": 2}

print (my_hash_map["a"])

my_hash_map["b"] = 3

print (my_hash_map["a"] + my_hash _map["b"])

Edvard Aksnes Exceptions aren't cool

Program execution is typically linear...

main.py

my_hash map = {"a": 1, "b": 2}

print (my_hash_map["a"])

my_hash_map["b"] = 3

print (my_hash_map["a"] + my_hash_map["b"])

Output:

$ python main.py
1
4

Edvard Aksnes Exceptions aren't cool

Program execution is typically linear...

main.py

my_hash_map = {"a": 1, "b": 2}

print (my_hash_map["c"])

my_hash_map["b"] = 3

print (my_hash_map["a"] + my_hash _map["b"])

Edvard Aksnes Exceptions aren't cool

Program execution is typically linear... NOT

main.py

my_hash_map = {"a": 1, "b": 2}

print (my_hash_map["c"])

my_hash_map["b"] = 3

print (my_hash_map["a"] + my_hash_map["b"])

Output:
Traceback (most recent call last):
File "main.py", line 3, in <module>
print (my_hash_map["c"])

KeyError: 'c'

Edvard Aksnes Exceptions aren't cool

Program execution is typically linear... NOT

my_hash '
print (m

Output:

Traceba | _
File ':

Edvard Aksnes Exceptions aren't cool

Becomes worse and worse...

super_important_business_critical_code.py

important = haha_i_only_work_sometimes ()

try:

must_be_done_every_time = lol_dont_care(important)
except:

run for your life

pass

Edvard Aksnes Exceptions aren't cool

Can we do something about this?

def only_works_sometimes(a:float, b:float) -> float:
return a / b

Edvard Aksnes Exceptions aren't cool

Can we do something about this?

def who_knows what_i 11 do(a:int, b:int) -> int:
return a / b

def predictable(a:int, b:int) -> <int, ZeroDivError>:
return a / b

Edvard Aksnes Exceptions aren't cool

Algebraic effects!

valuev == z

‘ true ’ false

‘ funz — ¢
| B
handler & ::= handler {return T — cr,
opi(z;k) — c1,...,0p,(z; k) — cn}
computation ¢ ::= return v
op(v;y.c)

dox < ¢1 in ¢

U1 v2

|
|
‘ if v then ¢ else ¢3
|
‘ with v handle ¢

Edvard Aksnes Exceptions aren't cool

Overall idea

Leading question

What if the type system was expanded with effects and handlers?

Edvard Aksnes Exceptions aren't cool

Overall idea

Leading question

What if the type system was expanded with effects and handlers?

In addition to functions and values, we add effects opy,...,0p,:
opi(v;y.c) <= let y= perform (op; v)in c
and handlers:

h = {return x — ¢,,0p,(v) — ¢4}
<= h=handler {
return x — Cout,

opi(v, k) — ¢;

Edvard Aksnes Exceptions aren't cool

Overall idea

Leading question

What if the type system was expanded with effects and handlers?

In addition to functions and values, we add effects opy,...,0p,:
opi(v;y.c) <= let y= perform (op; v)in c
and handlers:

h = {return x — ¢,,0p,(v) — ¢4}
<= h=handler {
return x — Cout,

opi(v, k) — ¢;

Edvard Aksnes Exceptions aren't cool

The Eff programming language

Going beyond effects

Handlers let us say "when this happens, do that.”

But what if we could decide what happens
next?

Edvard Aksnes Exceptions aren't cool

Introduction to call/cc

In Scheme, the call/cc function allows you to capture the
context of a computation, i.e. the rest of the program.

Edvard Aksnes Exceptions aren't cool

Introduction to call/cc

In Scheme, the call/cc function allows you to capture the
context of a computation, i.e. the rest of the program.

Always has been

Unlimited power!

Figure: You should have seen this
coming Figure: What we're about to do

Edvard Aksnes Exceptions aren't cool

A story for another time...

*programming
language theory talk*

monads:

Bonjour

Edvard Aksnes Exceptions aren't cool

FIN

Exceptions aren’t cool

	Appetizer
	Algebraic Effects
	Continuations
	FIN

